28 Matching Results

Search Results

Advanced search parameters have been applied.

Mineralogy of drill holes J-13, UE-25A No. 1, and USW G-1 at Yucca Mountain, Nevada

Description: The mineralogy of drill holes J-13, UE-25A No. 1, and USW G-1 was previously determined using qualitative and semiquantitative techniques, and most of the available data were neither complete nor accurate. New quantitative x-ray diffraction data were obtained for rocks from all three of these drill holes at Yucca Mountain, Nevada. These quantitative analyses employed both external and internal standard x-ray powder diffraction methods and permitted the precise determination of all phases commonly found in the tuffs at Yucca Mountain, including glass and opal-CT. These new data supplant previous analyses and include numerous additional phases. New findings of particular importance include better constraints on the distribution of the more soluble silica polymorphs, cristobalite and opal-CT. Opal-CT was associated solely with clinoptilolite-bearing horizons, and cristobalite disappearance coincided with the appearance of analcime in USW G-1. Unlike previous analyses, we identified significant amounts of smectite in drill hole J-13. We found no evidence to support previous reports of the occurrence of erionite or phillipsite in these drill holes.
Date: September 1, 1986
Creator: Bish, D.L. & Chipera, S.J.
Partner: UNT Libraries Government Documents Department

Mineralogy of drill hole UE-25p#1 at Yucca Mountain, Nevada

Description: Drill hole UE-25p{number_sign}1 is located east of the candidate repository block at Yucca Mountain, Nevada, and as such provides information on the geology of the accessible environment. The hole was drilled to a depth of 1807 m (5923 ft) and is unique in that it penetrates tuffs that are older than any volcanic units previously encountered in drill holes at Yucca Mountain. In addition, it is the only hole drilled to date that penetrates the base of the tuff sequence and enters the underlying Paleozoic dolomite basement. We have examined the mineralogy of drill cuttings, core, and sidewall samples from drill hole UE-25p{number_sign}1 is similar to that in the other drill holes examined at Yucca Mountain. The only significant differences in mineralogy from other drill holes include the presence of dolomite in the Paleozoic carbonate rocks and the occurrence of up to 3% laumontite, a Ca-zeolite, in four samples of the Lithic Ridge Tuff. 15 refs., 5 figs., 4 tabs.
Date: May 1, 1988
Creator: Chipera, S.J. & Bish, D.L.
Partner: UNT Libraries Government Documents Department

Revised mineralogic summary of Yucca Mountain, Nevada

Description: We have evaluated three-dimensional mineral distribution at Yucca Mountain, Nevada, using quantitative x-ray powder diffraction analysis. All data were obtained on core cuttings, or sidewall samples obtained from drill holes at and around Yucca Mountain. Previously published data are included with corrections, together with new data for several drill holes. The new data presented in this report used the internal standard method of quantitative analysis, which yields results of high precision for the phases commonly found in Yucca Mountain tuffs including opal-CT and glass. Mineralogical trends with depth previously noted are clearly shown by these new data. Glass occurrence is restricted almost without exception to above the present-day static water level (SWL), although glass has been identified below the SWL in partially zeolitized tuffs. Silica phases undergo well-defined transitions with depth, with tridymite and cristobalite occurring only above the SWL, opal-CT occurring with clinoptilolite-mordenite tuffs, and quartz most abundant below the SWL. Smectite occurs in small amounts in most samples but is enriched in two distinct zones. These zones are at the top of the vitric nonwelded base of the Tiva Canyon Member and at the top of the basal vitrophyre of the Topopah Spring Member. Our data support the presence of several zones of mordenite and clinoptilolite-heulandite as shown previously. New data on several deep clinoptililite-heulandite samples coexisting with analcime show that they are heulandite. Phillipsite has not been found in any Yucca Mountain samples, but erionite and chabazite have been found once in fractures. 21 refs., 17 figs.
Date: March 1, 1989
Creator: Bish, D.L. & Chipera, S.J.
Partner: UNT Libraries Government Documents Department

The occurrence and distribution of erionite at Yucca Mountain, Nevada

Description: We have conducted an investigation to determine the occurrence and distribution of erionite, a potential carcinogen, at Yucca Mountain, Nevada. Using x-ray powder diffraction techniques yielding detection limits to below 0.05 wt %, we positively identified erionite in only 3 out of 76 bulk and 12 fracture samples investigated. The three erionite-bearing samples (J12-620/630, UE-25aNo.1-1296.2, and USW G4-1314) all occur above the static water level in clay/zeolite-rich horizons near the top of vitrophyres. Erionite occurs as trace amounts of less than 1 wt % in the whole rock, although it may occur locally in significant amounts as fracture fillings (e.g., UE-25aNo.1-1296.2 where it comprises approximately 45 wt % of the fracture filling material). All three occurrences appear to be extremely isolated cases since erionite was not detected in neighboring samples. Erionite at Yucca Mountain apparently formed only in localized microenvironments, possibly restricted to fractures. Since erionite occurs in trace amounts only in extremely isolated instances, it should pose little or no health hazard to workers in the potential repository at Yucca Mountain or to the public. The amounts of erionite liberated to the biosphere should be negligible, particularly when compared with the amounts of erionite occurring naturally at the surface in Nevada and surrounding states. 24 refs., 7 figs., 2 tabs.
Date: September 1, 1989
Creator: Chipera, S.J. & Bish, D.L.
Partner: UNT Libraries Government Documents Department

Quantitative x-ray diffraction analyses of samples used for sorption studies by the Isotope and Nuclear Chemistry Division, Los Alamos National Laboratory

Description: Yucca Mountain, Nevada, is currently being investigated to determine its suitability to host our nation`s first geologic high-level nuclear waste repository. As part of an effort to determine how radionuclides will interact with rocks at Yucca Mountain, the Isotope and Nuclear Chemistry (INC) Division of Los Alamos National Laboratory has conducted numerous batch sorption experiments using core samples from Yucca Mountain. In order to understand better the interaction between the rocks and radionuclides, we have analyzed the samples used by INC with quantitative x-ray diffraction methods. Our analytical methods accurately determine the presence or absence of major phases, but we have not identified phases present below {approximately}1 wt %. These results should aid in understanding and predicting the potential interactions between radionuclides and the rocks at Yucca Mountain, although the mineralogic complexity of the samples and the lack of information on trace phases suggest that pure mineral studies may be necessary for a more complete understanding. 12 refs., 1 fig., 1 tab.
Date: September 1, 1989
Creator: Chipera, S.J. & Bish, D.L.
Partner: UNT Libraries Government Documents Department

Manganese-oxide minerals in fractures of the Crater Flat Tuff in drill core USW G-4, Yucca Mountain, Nevada

Description: The Crater Flat Tuff is almost entirely below the water table in drill hole USW G-4 at Yucca Mountain, Nevada. Manganese-oxide minerals from the Crater Flat Tuff in USW G-4 were studied using optical, scanning electron microscopic, electron microprobe, and x-ray powder diffraction methods to determine their distribution, mineralogy, and chemistry. Manganese-oxide minerals coat fractures in all three members of the Crater Flat Tuff (Prow Pass, Bullfrog, and Tram), but they are most abundant in fractures in the densely welded devitrified intervals of these members. The coatings are mostly of the cryptomelane/hollandite mineral group, but the chemistry of these coatings varies considerably. Some of the chemical variations, particularly the presence of calcium, sodium, and strontium, can be explained by admixture with todorokite, seen in some x-ray powder diffraction patterns. Other chemical variations, particularly between Ba and Pb, demonstrate that considerable substitution of Pb for Ba occurs in hollandite. Manganese-oxide coatings are common in the 10-m interval that produced 75% of the water pumped from USW G-4 in a flow survey in 1983. Their presence in water-producing zones suggests that manganese oxides may exert a significant chemical effect on groundwater beneath Yucca Mountain. In particular, the ability of the manganese oxides found at Yucca Mountain to be easily reduced suggests that they may affect the redox conditions of the groundwater and may oxidize dissolved or suspended species. Although the Mn oxides at Yucca Mountain have low exchange capacities, these minerals may retard the migration of some radionuclides, particularly the actinides, through scavenging and coprecipitation. 23 refs., 21 figs., 2 tabs.
Date: July 1, 1990
Creator: Carlos, B.A.; Bish, D.L. & Chipera, S.J.
Partner: UNT Libraries Government Documents Department

Fracture-lining minerals in the lower Topopah Spring Tuff at Yucca Mountain

Description: Fracture-lining minerals in the lower Topopah Spring Member of the Paintbrush Tuff at Yucca Mountain, Nevada, are being examined to characterize potential flow paths within and away from the candidate repository horizon. Fracture coatings within this interval can be divided into five categories based on rock matrix and type of fracture. Fracture coatings in the densely welded tuff above the basal vitrophyre, near the candidate repository horizon, include (1) those related to lithophysal cavities; (2) mordenite and manganese oxides on nearly planar fractures; (3) later fracture coatings consisting of zeolites, smectite, and calcite. Fracture-coating minerals in the vitrophyre are fine-grained and consist of smectite and a variety of zeolites. The non- to partially-welded vitric and/or zeolitic stuff below the vitrophyre contains fractures mostly lined by cristobalite and clinoptilolite. 13 refs., 2 figs., 1 tab.
Date: January 1, 1991
Creator: Carlos, B.A.; Bish, D.L. & Chipera, S.J.
Partner: UNT Libraries Government Documents Department

Mineralogical Charecteristics of Yucca Mountain Alluvium and Effects on Neptunium (V) Sorption

Description: Saturated alluvium is expected to serve as an important natural barrier to radionuclide transport at Yucca Mountain, the proposed geological repository for disposal of high-level nuclear wastes. {sup 237}Np(V) (half-life = 2.4 x 10{sup 5} years) has been identified as one of the radionuclides that could potentially contribute the greatest dose to humans because of its relatively high solubility and weak adsorption to volcanic tuffs under oxidizing conditions. The previous studies suggested that the mineralogical characteristics of the alluvium play an important role in the interaction between Np(V) and the alluvium. The purpose of this study is to further evaluate the mineralogical basis for Neptunium (V) sorption by saturated alluvium located down-gradient of Yucca Mountain.
Date: September 5, 2006
Creator: Ding, M.; Chipera, S.J. & Reimus, P.W.
Partner: UNT Libraries Government Documents Department

Uranium and Neptunium Desorption from Yucca Mountain Alluvium

Description: Uranium and neptunium were used as reactive tracers in long-term laboratory desorption studies using saturated alluvium collected from south of Yucca Mountain, Nevada. The objective of these long-term experiments is to make detailed observations of the desorption behavior of uranium and neptunium to provide Yucca Mountain with technical bases for a more realistic and potentially less conservative approach to predicting the transport of adsorbing radionuclides in the saturated alluvium. This paper describes several long-term desorption experiments using a flow-through experimental method and groundwater and alluvium obtained from boreholes along a potential groundwater flow path from the proposed repository site. In the long term desorption experiments, the percentages of uranium and neptunium sorbed as a function of time after different durations of sorption was determined. In addition, the desorbed activity as a function of time was fit using a multi-site, multi-rate model to demonstrate that different desorption rate constants ranging over several orders of magnitude exist for the desorption of uranium from Yucca Mountain saturated alluvium. This information will be used to support the development of a conceptual model that ultimately results in effective K{sub d} values much larger than those currently in use for predicting radionuclide transport at Yucca Mountain.
Date: March 16, 2006
Creator: Scism, C.D.; Reimus, P.W.; Ding, M. & Chipera, S.J.
Partner: UNT Libraries Government Documents Department

Uranium-Series Constraints on Subrepository Water Flow at Yucca Mountain, Nevada

Description: Mineral abundances and whole-rock chemical and uranium-series isotopic compositions were measured in unfractured and rubble core samples from borehole USWSD-9 in the same layers of variably zeolitized tuffs that underlie the proposed nuclear waste repository at Yucca Mountain, Nevada. Uranium concentrations and isotopic compositions also were measured in pore water from core samples from the same rock units and rock leachates representing loosely bound U adsorbed on mineral surfaces or contained in readily soluble secondary minerals. The chemical and isotopic data were used to evaluate differences in water-rock interaction between fractured and unfractured rock and between fracture surfaces and rock matrix. Samples of unfractured and rubble fragments (about 1 centimeter) core and material from fracture surfaces show similar amounts of uranium-series disequilibrium, recording a complex history of sorption and loss of uranium over the past 1 million years. The data indicate that fractures in zeolitized tuffs may not have had greater amounts of water-rock interaction than the rock matrix. The data also show that rock matrix from subrepository units is capable of scavenging uranium with elevated uranium-234/uranium-238 from percolating water and that retardation of radionuclides and dose reduction may be greater than currently credited to this aspect of the natural barrier. Uranium concentrations of pore water and the rock leachates are used to estimate long-term in situ uranium partition coefficient values greater than 7 milliliters per gram.
Date: March 10, 2006
Creator: Neymark, L. A.; Paces, J. B.; Chipera, S. J. & Vaniman, D. T.
Partner: UNT Libraries Government Documents Department

Petrography, mineralogy, and chemistry of calcite-silica deposits at Exile Hill, Nevada, compared with local spring deposits

Description: Chemical, mineralogic, and petrographic analyses of siliceous calcretes from Exile Hill east of Yucca Mountain, Nevada, indicate that pedogenic processes alone account for the formation of the calcretes. These calcretes have been interpreted by some observers as evidence of seismically triggered eruptions of deep water. Such an origin could have important consequences if Yucca Mountain is developed as an unsaturated site for the disposal of high-level nuclear waste. At odds with this hypothesis are the absence of features that should be present at fault-fed springs (e.g., fissure-ridge mounds with microterraces) and the preservation within root casts of delicate pedogenic microfossils, such as calcified filaments and needle-fiber calcites. Mineral-chemical evidence of pedogenic origin is found in heavy-mineral concentrations, reflected in Fe and Sc enrichments. These concentrations, which occur in the most massive of the vein calcretes, require derivation of detritus from a mixture of weathered and eolian materials that occur in the overlying B soil horizons, as opposed to direct incorporation of adjacent unweathered bedrock. Carbonate and silica abundances and accumulation rates are well within the scope of pedogenic processes. Calcium is derived from rainwater or eolian sources, whereas silica is derived in part by dissolution of local volcanic glasses or from dissolution of unstable silica minerals that are abundant in the local tuffs. In contrast with local deposits that are of spring or seep origin, the siliceous calcretes at Yucca Mountain are pedogenic in origin as well as evolution and provide no evidence in support of conjectured spring activity.
Date: December 1995
Creator: Vaniman, D. T.; Chipera, S. J. & Bish, D. L.
Partner: UNT Libraries Government Documents Department

Fracture coatings in Topopah Spring Tuff along drill hole wash

Description: Fracture-lining minerals are being studied as part of site characterization to determine the suitability of Yucca Mountain, Nevada as a potential high level nuclear waste repository. Fracture coatings in the Paintbrush Group provide information on potential flow paths above the water table both toward and away from the potential repository and provide information on the distribution of fracture-lining minerals needed to model thermal effects of waste emplacement. Fracture coatings within the predominantly non-zeolitic Paintbrush Group vary both with depth and laterally across Yucca Mountain, whereas fracture coatings in tuffs below the Paintbrush Group are related to the mineralogy of the tuffs and follow a consistent pattern of distribution with predominantly quartz, calcite, and manganese oxides in the devitrified intervals and mordenite and clinoptilolite in the zeolitic intervals. The zeolites stellerite and heulandite are more abundant in fractures in the Topopah Spring Tuff in drill holes USW G-1 and UE-25 a{number_sign}l, located along Drill Hole Wash (at the northern end of Yucca Mountain) than in core from other parts of Yucca Mountain. Buesch et al. (2) present evidence for a complex fault system along Drill Hole Wash. To investigate the possibility that the abundant fracture-lining zeolites in USW G-1 and UE-25 a{number_sign} 1 are related to the Drill Hole Wash fault, the Topopah Spring Tuff was examined in drill cores from USW UZ-14, USW G-1, USW NRG-7/7a, and UE-25 a{number_sign}l.
Date: December 1, 1994
Creator: Carlos, B.A.; Chipera, S.J. & Bish, D.L.
Partner: UNT Libraries Government Documents Department

Multiple episodes of zeolite deposition in fractured silicic tuff

Description: Fractures in silicic tuffs above the water table at Yucca Mountain, Nevada, USA contain two morphologies of heulandite with different compositions. Tabular heulandite is zoned, with Sr-rich cores and Mg-rich rims. Later prismatic heulandite is nearly the same composition as the more magnesian rims. Heulandite and stellerite may occur between layers of calcite, and calcite occurs locally between generations of heulandite. Thermodynamic modeling, using estimated thermodynamic data and observed chemical compositions for heulandite and stellerite, shows that stellerite is the favored zeolite unless Ca concentrations are reduced or Mg and/or Sr concentrations are significantly elevated above current Yucca Mountain waters.
Date: April 1, 1995
Creator: Carlos, B.A.; Chipera, S.J. & Snow, M.G.
Partner: UNT Libraries Government Documents Department

Preliminary assessment of clinoptilolite K/Ar results from Yucca Mountain, Nevada: A potential high-level radioactive waste repository site

Description: At Yucca Mountain, evidence for at least three distinct temporal groups of clinoptilolites can be delineated from the preliminary K/Ar dates (2--3 Ma; 4--5 Ma; 7--11 Ma). The older K/Ar dates that are similar to published illite/smectite ages (9--12 Ma) may be crystallization ages, whereas the younger dates probably represent continued diagenetic reactions of older clinoptilolites with percolating fluids. The K/Ar dates increase with depth, suggesting minimal argon loss in the deeper samples. Internal consistency of the clinoptilolite K/Ar results at different levels within the drill holes suggest that dating of K-rich zeolites may provide useful information for assessing the zeolitization at Yucca Mountain. Variations in the K/Ar dates are probably related to Ar loss during dissolution of older clinoptilolites and to contamination by finely crystalline feldspars.
Date: March 1, 1992
Creator: WoldeGabriel, G.; Bish, D.L.; Broxton, D.E. & Chipera, S.J.
Partner: UNT Libraries Government Documents Department

Distribution and chemistry of fracture-lining minerals at Yucca Mountain, Nevada

Description: Yucca Mountain, a >1.5-km-thick sequence of tuffs and subordinate lavas in southwest Nevada, is being investigated as a potential high-level nuclear waste repository site. Fracture-lining minerals have been studied because they may provide information on past fluid transport and because they may act as natural barriers to radionuclide migration within the fractures. Cores from seven drill holes have been studied to determine the distribution and chemistry of minerals lining fractures at Yucca Mountain. Fracture-lining minerals in tuffs of the Paintbrush Group, which is above the static water level at Yucca Mountain, are highly variable in distribution, both vertically and laterally across the mountain, with the zeolites mordenite, heulandite, and stellerite widespread in fractures even though the tuff matrix is generally devitrified and nonzeolitic. Where heulandite occurs as both tabular and prismatic crystals in the same fracture, the two morphologies have different compositions, suggesting multiple episodes of zeolite formation within the fractures. Manganese-oxide minerals within the Paintbrush Group are rancieite and lithiophorite. The silica polymorphs (quartz, tridymite, and cristobalite) generally exist in fractures where they exist in the matrix, suggesting that they formed in the fractures at the same time they formed in the matrix. Fluorite, calcite, and opal occur over tridymite in some lithophysal cavities. Calcite also occurs over zeolites in fractures unrelated to lithophysal cavities and is often the youngest mineral in a given fracture. The clays smectite, palygorskite, and sepiolite are common in fractures in the Paintbrush Group in drill core USW GU-3; smectite is an abundant fracture-coating mineral in all drill cores at Yucca Mountain.
Date: December 1, 1995
Creator: Carlos, B.A.; Chipera, S.J. & Bish, D.L.
Partner: UNT Libraries Government Documents Department

Alteration history studies in the Exploratory Studies Facility, Yucca Mountain, Nevada, USA

Description: By mid-1995, the Exploratory Studies Facility (ESF) extended about 1. 1 km from Exile Hill westward toward Yucca Mountain, mostly within densely welded, devitrfied Tiva Canyon Tuff. Secondary mineral occurrences in this unit include breccia cements of mordenite, a fibrous zeolite, and vapor-phase deposits of silica, alkali feldspar, apatite, hollandite, amphibole, and zircon. Calcite is also a common secondary mineral in faults and fractures. Studies of water and gas contents in fluid inclusions in calcites from a fault in nonwelded tuff and a fracture in densely welded tuff suggest mineral deposition under transient locally saturated conditions. Calcite in the nonwelded tuff incorporated air from the unsaturated tuff adjacent to the fault. A highly altered interval within pre-Pah Canyon tuffs just above the top of the Topopah Spring Tuff may be a fossil fumarole or other hydrothermal feature associated with cooling pyroclastic deposits, overprinted by later zeolitic alteration. The observed quartz, cristobalite, opal-CT, and fluorite have been widely identified as products of syngenetic devitrification and vapor-phase alteration in and above the Topopah Spring Tuff. Smectite, also an abundant secondary mineral at the ESF site, has been observed elsewhere at this stratigraphic level. Zeolitic alteration of nonwelded tuffs above the Topopah Spring Tuff, as seen in the ESF, has also been noted in drill core and outcrop at northeastern Yucca Mountain. The hydrologic and geochemical conditions that favored zeolitization only in certain areas of this stratigraphic interval have yet to be determined.
Date: April 1996
Creator: Levy, S. S.; Chipera, S. J. & Norman, D. I.
Partner: UNT Libraries Government Documents Department

Equilibrium modeling of the formation of zeolites in fractures at Yucca Mountain, Nevada

Description: Yucca Mountain, in southern Nevada, is currently being investigated to determine its suitability to host the first US high-level nuclear waste repository. One of the reasons that Yucca Mountain was chosen for study is the presence of thick sequences of zeolite-rich horizons. In as much as fractures may serve as potential pathways for aqueous transport, the minerals that line fractures are of particular interest. Zeolites are common in fractures at Yucca Mountain and consist mainly of clinoptilolite/heulandite and mordenite although sporadic occurrences of chabazite, erionite, phillipsite, and stellrite have been identified using X-ray powder diffraction. To understand better the conditions under which the observed zeolite species were formed, thermodynamic data were estimated and calculations of log a((K{sup +}){sup 2}/Ca{sup ++}) versus log a((Na{sup +}){sup 2}/Ca{sup ++}) were conducted at various temperatures and silica activities. Using present-day Yucca Mountain water chemistries as a lower constraint on silica activity, clinoptilolite/heulandite and mordenite are still the zeolite species that would form under present conditions.
Date: August 1993
Creator: Chipera, S. J.; Bish, D. L. & Carlos, B. A.
Partner: UNT Libraries Government Documents Department

Mineralogic variation in drill core UE-25 UZ{number_sign}16, Yucca Mountain, Nevada

Description: Quantitative X-ray powder diffraction methods have been used to analyze 108 samples from drill core UE-25 UZ{number_sign}16 at Yucca Mountain, Nevada. This drill hole, located within the imbricate fault zone east of the potential Yucca Mountain repository site, confirms the authors` previous knowledge of gross-scale mineral distributions at Yucca Mountain and provides insight into possible shallow pathways for hydrologic recharge into the potential host rock. Analyses of samples from UE-25 UZ{number_sign}16 have shown that the distribution of major zeolitized horizons, of silica phases, and of glassy tuffs are similar to those noted in nearby drill cores. However, the continuous core and closer sample spacing in UE-25 UZ{number_sign}16 provide a more exact determination of mineral stratigraphy, particularly in hydrologically important units such as the Paintbrush bedded tuffs above the Topopah Spring Tuff and in the upper vitrophyre of the Topopah Spring Tuff. The discovery of matrix zeolitization in the devitrified Topopah Spring Tuff of UE25 UZ{number_sign}16 shows that some unexpected mineralogic features can still be encountered in the exploration of Yucca Mountain and emphasizes the importance of obtaining a more complete three-dimensional model of Yucca Mountain mineralogy.
Date: February 1, 1995
Creator: Chipera, S.J.; Vaniman, D.T.; Carlos, B.A. & Bish, D.L.
Partner: UNT Libraries Government Documents Department

Mineralogy and clinoptilolite K/Ar results from Yucca Mountain, Nevada, USA: A potential high-level radioactive waste repository site

Description: The Yucca Mountain Site Characterization Project is investigating Yucca Mountain, Nevada, as a potential site for a high-level nuclear waste repository. An important aspect of this evaluation is to understand the geologic history of the site including the diagenetic processes that are largely responsible for the present-day chemical and physical properties of the altered tuffs. This study evaluates the use of K/Ar geochronology in determining the alteration history of the zeolitized portions of Miocene tuffs at Yucca Mountain. Clinoptilolite is not generally regarded as suitable for dating because of its open structure and large ion-exchange capacity. However, it is the most abundant zeolite at Yucca Mountain and was selected for this study to assess the feasibility of dating the zeolitization process and/or subsequent processes that may have affected the zeolites. In this study we examine the ability of this mineral to retain all or part of its K and radiogenic Ar during diagenesis and evaluate the usefulness of the clinoptilolite K/Ar dates for determining the history of alteration.
Date: November 1, 1993
Creator: WoldeGabriel, G.; Broxton, D.E.; Bish, D.L. & Chipera, S.J.
Partner: UNT Libraries Government Documents Department

Silica Deposition in Field and Laboratory Thermal Tests of Yucca Mountain Tuff

Description: A field thermal test was conducted by the Yucca Mountain Site Characterization Project to observe changes in the Topopah Spring Tuff middle nonlithophysal zone geohydrologic system due to thermal loading. A laboratory-scale crushed-tuff hydrothermal column test was used to investigate the tuff as a potential construction material within a nuclear-waste repository. Results of similar column tests have been cited as indications that silica deposition would plug the rock fractures above a repository and create unfavorable drainage conditions. Data from field and laboratory tests are used here to predict the magnitude of fracture sealing. For the crushed-tuff column test, a one-meter-high column was packed with crushed tuff to a porosity of about 50%. Water filling the lowermost 10 cm of the column was boiled and the vapor condensed at the top of the column, percolating down to the boiling zone. After 100 days, intergranular pore space in the saturated portion of the column was almost filled with amorphous silica. The Drift Scale Test at Yucca Mountain is a heating test in the unsaturated zone. It consists of a four-year heating phase, now complete, followed by a four-year cooling phase. Heaters in a 60-m-long drift and in the adjacent rock have heated the drift walls to 200 C. As the rock was heated, fluids naturally present in the rock migrated away from the heat sources. A boiling zone now separates an inner dry-out zone from an outer condensation zone. A heat-pipe region exists in the outer margin of the boiling zone above the heated drift. Amorphous silica coatings up to a few micrometers thick were deposited in this region. Deposits were observed in less than 10% of the fractures in the heat pipe region. Drift-scale test results yield a silica deposition rate of about 250 {micro}m/1000 years in 10% of the fractures ...
Date: August 30, 2002
Creator: Levy, S.S.; Chipera, S.J. & Snow, M.G.
Partner: UNT Libraries Government Documents Department

Distribution of potentially hazardous phases in the subsurface at Yucca Mountain, Nevada

Description: Drilling, trenching, excavation of the Exploratory Studies Facility, and other surface and underground-distributing activities have the potential to release minerals into the environment from tuffs at Yucca Mountain, Nevada. Some of these minerals may be potential respiratory health hazards. Therefore, an understanding of the distribution of the minerals that may potentially be liberated during site-characterization and operation of the potential repository is crucial to ensuring worker and public safety. Analysis of previously reported mineralogy of Yucca Mountain tuffs using data and criteria from the International Agency for Research on Cancer (IARC) suggests that the following minerals are of potential concern: quartz, cristobalite, tridymite, opal-CT, erionite, mordenite, and palygorskite. The authors have re-evaluated the three-dimensional mineral distribution at Yucca Mountain above the static water level both in bulk-rock samples and in fractures, using quantitative X-ray powder diffraction analysis. Erionite, mordenite, and palygorskite occur primarily in fractures; the crystalline-silica minerals, quartz, cristobalite, and tridymite are major bulk-rock phases. Erionite occurs in the altered zone just above the lower Topopah Spring Member vitrophyre, and an occurrence below the vitrophyre but above the Calico Hills has recently been identified. In this latter occurrence, erionite is present in the matrix at levels up to 35 wt%. Mordenite and palygorskite occur throughout the vadose zone nearly to the surface. Opal-CT is limited to zeolitic horizons.
Date: May 1, 1995
Creator: Guthrie, G.D. Jr.; Bish, D.L.; Chipera, S.J. & Raymond, R. Jr.
Partner: UNT Libraries Government Documents Department

Geologic evaluation of six nonwelded tuff sites in the vicinity of Yucca Mountain, Nevada for a surface-based test facility for the Yucca Mountain Project

Description: Outcrops of nonwelded tuff at six locations in the vicinity of Yucca Mountain, Nevada, were examined to determine their suitability for hosting a surface-based test facility for the Yucca Mountain Project. Investigators will use this facility to test equipment and procedures for the Exploratory Studies Facility and to conduct site characterization field experiments. The outcrops investigated contain rocks that include or are similar to the tuffaceous beds of Calico Hills, an important geologic and hydrologic barrier between the potential repository and the water table. The tuffaceous beds of Calico Hills at the site of the potential repository consist of both vitric and zeolitic tuffs, thus three of the outcrops examined are vitric tuffs and three are zeolitic tuffs. New data were collected to determine the lithology, chemistry, mineralogy, and modal petrography of the outcrops. Some preliminary data on hydrologic properties are also presented. Evaluation of suitability of the six sites is based on a comparison of their geologic characteristics to those found in the tuffaceous beds of Calico Hills within the exploration block.
Date: October 1, 1993
Creator: Broxton, D.E.; Chipera, S.J.; Byers, F.M. Jr. & Rautman, C.A.
Partner: UNT Libraries Government Documents Department

Comparison of neptunium sorption results using batch and column techniques

Description: We used crushed-rock columns to study the sorption retardation of neptunium by zeolitic, devitrified, and vitric tuffs typical of those at the site of the potential high-level nuclear waste repository at Yucca Mountain, Nevada. We used two sodium bicarbonate waters (groundwater from Well J-13 at the site and water prepared to simulate groundwater from Well UE-25p No. 1) under oxidizing conditions. It was found that values of the sorption distribution coefficient, Kd, obtained from these column experiments under flowing conditions, regardless of the water or the water velocity used, agreed well with those obtained earlier from batch sorption experiments under static conditions. The batch sorption distribution coefficient can be used to predict the arrival time for neptunium eluted through the columns. On the other hand, the elution curves showed dispersivity, which implies that neptunium sorption in these tuffs may be nonlinear, irreversible, or noninstantaneous. As a result, use of a batch sorption distribution coefficient to calculate neptunium transport through Yucca Mountain tuffs would yield conservative values for neptunium release from the site. We also noted that neptunium (present as the anionic neptunyl carbonate complex) never eluted prior to tritiated water, which implies that charge exclusion does not appear to exclude neptunium from the tuff pores. The column experiments corroborated the trends observed in batch sorption experiments: neptunium sorption onto devitrified and vitric tuffs is minimal and sorption onto zeolitic tuffs decreases as the amount of sodium and bicarbonate/carbonate in the water increases.
Date: August 1, 1996
Creator: Triay, I.R.; Furlano, A.C.; Weaver, S.C.; Chipera, S.J. & Bish, D.L.
Partner: UNT Libraries Government Documents Department