12 Matching Results

Search Results

Advanced search parameters have been applied.

Commercialization of New Carbon Fiber Materials Based on Sustainable Resources for Energy Applications

Description: Oak Ridge National Laboratory (ORNL) and GrafTech International have collaborated to develop and demonstrate the performance of high temperature thermal insulation prototypes made from lignin-based carbon fibers. This project will potentially lead to the first commercial application of lignin-based carbon fibers (LBCF). The goal of the commercial application is to replace expensive, Chinese-sourced isotropic pitch carbon fibers with lower cost carbon fibers made from a domestically sourced, bio-derived (renewable) feedstock. LBCF can help recapture jobs that were previously exported to China while resolving a supply chain vulnerability and reducing the production cost for GrafTech s high temperature thermal insulation. The performance of the LBCF prototypes was measured and found to be comparable to that of the current commercial product. During production of the insulation prototypes, ORNL and GrafTech demonstrated lignin compounding/pelletization, fiber production, heat treatment, and compositing at scales far surpassing those previously demonstrated in LBCF R&D or production. A plan was developed for the commercialization of LBCF thermal insulation, with key milestones including qualification of multiple scalable lignin sources in 2013, tons-scale production and field testing by customers in 2014, and product launch as soon thereafter as production capabilities can be constructed and commissioned.
Date: March 1, 2013
Creator: Eberle, Cliff; Webb, Daniel C; Albers, Tracy & Chen, Chong
Partner: UNT Libraries Government Documents Department

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

Description: The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. The Hydrotreatment Facility is being prepared for trials with coal liquids. Raw coal tar distillate trials have been carried out by heating coal tar in the holding tank in the Hydrotreatment Facility. The liquids are centrifuged to warm the system up in preparation for the coal liquids. The coal tar distillate is then recycled to keep the centrifuge hot. In this way, the product has been distilled such that a softening point of approximately 110 C is reached. Then an ash test is conducted.
Date: July 13, 2005
Creator: Kennel, Elliot B.; Chen, Chong; Dadyburjor, Dady; Magean, Liviu; Stansberry, Peter G.; Stiller, Alfred H. et al.
Partner: UNT Libraries Government Documents Department

PRODUCTION OF FOAMS, FIBERS AND PITCHES USING A COAL EXTRACTION PROCESS

Description: This Department of Energy National Energy Technology Laboratory sponsored project developed processes for converting coal feedstocks to carbon products, including coal-derived pitch, coke foams and fibers based on solvent extraction processes. A key technology is the use of hydrogenation accomplished at elevated temperatures and pressures to obtain a synthetic coal pitch. Hydrogenation, or partial direct liquefaction of coal, is used to modify the properties of raw coal such that a molten synthetic pitch can be obtained. The amount of hydrogen required to produce a synthetic pitch is about an order of magnitude less than the amount required to produce synthetic crude oil. Hence the conditions for synthetic pitch production consume very little hydrogen and can be accomplished at substantially lower pressure. In the molten state, hot filtration or centrifugation can be used to separate dissolved coal chemicals from mineral matter and insolubles (inertinite), resulting in the production of a purified hydrocarbon pitch. Alternatively, if hydrogenation is not used, aromatic hydrocarbon liquids appropriate for use as precursors to carbon products can obtained by dissolving coal in a solvent. As in the case for partial direct liquefaction pitches, undissolved coal is removed via hot filtration or centrifugation. Excess solvent is boiled off and recovered. The resultant solid material, referred to as Solvent Extracted Carbon Ore or SECO, has been used successfully to produce artificial graphite and carbon foam.
Date: June 20, 2004
Creator: Chen, Chong; Kennel, Elliot B.; Magean, Liviu; Stansberry, Pete G.; Stiller, Alfred H. & Zondlo, John W.
Partner: UNT Libraries Government Documents Department

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

Description: The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. Table 1 provides an overview of the major markets for carbon products. Current sources of materials for these processes generally rely on petroleum distillation products or coal tar distillates obtained as a byproduct of metcoke production facilities. In the former case, the American materials industry, just as the energy industry, is dependent upon foreign sources of petroleum. In the latter case, metcoke production is decreasing every year due to the combined difficulties associated with poor economics and a significant environmental burden. Thus, a significant need exists for an environmentally clean process which can used domestically obtained raw materials and which can still be very competitive economically.
Date: April 13, 2005
Creator: Kennel, Elliot B.; Chen, Chong; Dadyburjor, Dady; Magean, Liviu; Stansberry, Peter G.; Stiller, Alfred H. et al.
Partner: UNT Libraries Government Documents Department

RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS

Description: This report presents the results of a one-year effort directed at the exploration of the use of coal as a feedstock for a variety of industrially-relevant carbon products. The work was basically divided into three focus areas. The first area dealt with the acquisition of laboratory equipment to aid in the analysis and characterization of both the raw coal and the coal-derived feedstocks. Improvements were also made on the coal-extraction pilot plant which will now allow larger quantities of feedstock to be produced. Mass and energy balances were also performed on the pilot plant in an attempt to evaluate the scale-up potential of the process. The second focus area dealt with exploring hydrogenation conditions specifically aimed at testing several less-expensive candidate hydrogen-donor solvents. Through a process of filtration and vacuum distillation, viable pitch products were produced and evaluated. Moreover, a recycle solvent was also isolated so that the overall solvent balance in the system could be maintained. The effect of variables such as gas pressure and gas atmosphere were evaluated. The pitch product was analyzed and showed low ash content, reasonable yield, good coking value and a coke with anisotropic optical texture. A unique plot of coke yield vs. pitch softening point was discovered to be independent of reaction conditions or hydrogen-donor solvent. The third area of research centered on the investigation of alternate extraction solvents and processing conditions for the solvent extraction step. A wide variety of solvents, co-solvents and enhancement additives were tested with varying degrees of success. For the extraction of raw coal, the efficacy of the alternate solvents when compared to the benchmark solvent, N-methyl pyrrolidone, was not good. However when the same coal was partially hydrogenated prior to solvent extraction, all solvents showed excellent results even for extractions performed at room temperature. Standard analyses of ...
Date: March 31, 2002
Creator: Stansberry, Peter G.; Stiller, Alfred H.; Zondlo, John W.; Chen, Chong; Bland, Brian & Fenton, David
Partner: UNT Libraries Government Documents Department

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

Description: The purpose of this DOE-funded effort is to develop technologies for carbon products from coal-derived feedstocks. Carbon products can include precursor materials such as solvent extracted carbon ore (SECO) and synthetic pitch (Synpitch). In addition, derived products include carbon composites, fibers, foams and others. Key milestones included producing hydrogenated coal in the Hydrotreating Facility for the first time. The facility is now operational, although digital controls have not yet been completely wired. In addition, ultrasound is being used to investigate enhanced dissolution of coal. Experiments have been carried out.
Date: February 23, 2006
Creator: Dadyburjor, Dady; Chen, Chong; Kennel, Elliot B.; Magean, Liviu; Stansberry, Peter G.; Stiller, Alfred H. et al.
Partner: UNT Libraries Government Documents Department

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

Description: This NETL sponsored effort seeks to develop continuous technologies for the production of carbon products, which may be thought of as the heavier products currently produced from refining of crude petroleum and coal tars obtained from metallurgical grade coke ovens. This effort took binder grade pitch, produced from liquefaction of West Virginia bituminous grade coal, all the way to commercial demonstration in a state of the art arc furnace. Other products, such as crude oil, anode grade coke and metallurgical grade coke were demonstrated successfully at the bench scale. The technology developed herein diverged from the previous state of the art in direct liquefaction (also referred to as the Bergius process), in two major respects. First, direct liquefaction was accomplished with less than a percent of hydrogen per unit mass of product, or about 3 pound per barrel or less. By contrast, other variants of the Bergius process require the use of 15 pounds or more of hydrogen per barrel, resulting in an inherent materials cost. Second, the conventional Bergius process requires high pressure, in the range of 1500 psig to 3000 psig. The WVU process variant has been carried out at pressures below 400 psig, a significant difference. Thanks mainly to DOE sponsorship, the WVU process has been licensed to a Canadian Company, Quantex Energy Inc, with a commercial demonstration unit plant scheduled to be erected in 2011.
Date: December 31, 2009
Creator: Kennel, Elliot; Chen, Chong; Dadyburjor, Dady; Heavner, Mark; Katakdaunde, Manoj; Magean, Liviu et al.
Partner: UNT Libraries Government Documents Department

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

Description: The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. A process has been developed which results in high quality binder pitch suitable for use in graphite electrodes or carbon anodes. A detailed description of the protocol is given by Clendenin. Briefly, aromatic heavy oils are hydro-treated under mild conditions in order to increase their ability to dissolve coal. An example of an aromatic heavy oil is Koppers Carbon Black Base (CBB) oil. CBB oil has been found to be an effective solvent and acceptably low cost (i.e., significantly below the market price for binder pitch, or about $280 per ton at the time of this writing). It is also possible to use solvents derived from hydrotreated coal and avoid reliance on coke oven recovery products completely if so desired.
Date: April 13, 2005
Creator: Kennel, Elliot B.; Biedler, Philip L.; Chen, Chong; Dadyburjor, Dady; Magean, Liviu; Stansberry, Peter G. et al.
Partner: UNT Libraries Government Documents Department

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

Description: The purpose of this DOE-funded effort is to develop technologies for carbon products from coal-derived feed-stocks. Carbon products can include precursor materials such as solvent extracted carbon ore (SECO) and synthetic pitch (Synpitch). In addition, derived products include carbon composites, fibers, foams and others.
Date: December 12, 2005
Creator: Dadyburjor, Dady; Chen, Chong; Kennel, Elliot B.; Magean, Liviu; Stansberry, Peter G.; Stiller, Alfred H. et al.
Partner: UNT Libraries Government Documents Department

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

Description: High melting temperature synthetic pitches (Synpitches) were created using coal derivatives produced from a solvent extraction technique. Solvent extraction is used to separate hydrocarbons from mineral matter as well as other insolubles. Mild hydrogenation can be used to chemically modify resultant material to produce a true pitch. There are three main techniques which can be used to tailor the softening point of the Synpitch. First, the softening point can be controlled by varying the conditions of hydrogenation, chiefly the temperature, pressure and residence time in a hydrogen overpressure. Second, by selectively distilling light hydrocarbons, the softening point of the remaining pitch can be raised. Third, the Synpitch can be blended with another mutually soluble pitch or hydrocarbon liquid. Through such techniques, spinnable isotropic Synpitches have been created from coal feedstocks. Characteristics of Synpitches include high cross-linking reactivity and high molecular weight, resulting in carbon fibers with excellent mechanical properties. To date, mechanical properties have been achieved which are comparable to the state of the art achievable with conventional coal tar pitch or petroleum pitch.
Date: December 12, 2005
Creator: Dadyburjor, Dady; Chen, Chong; Kennel, Elliot B.; Magean, Liviu; Stansberry, Peter G.; Stiller, Alfred H. et al.
Partner: UNT Libraries Government Documents Department

DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

Description: The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. There are a number of parameters which are important for the production of acceptable cokes, including purity, structure, density, electrical resistivity, thermal conductivity etc. From the standpoint of a manufacturer of graphite electrodes such as GrafTech, one of the most important parameters is coefficient of thermal expansion (CTE). Because GrafTech material is usually fully graphitized (i.e., heat treated at 3100 C), very high purity is automatically achieved. The degree of graphitization controls properties such as CTE, electrical resistivity, thermal conductivity, and density. Thus it is usually possible to correlate these properties using a single parameter. CTE has proven to be a useful index for the quality of coke. Pure graphite actually has a slightly negative coefficient of thermal expansion, whereas more disordered carbon has a positive coefficient.
Date: June 23, 2005
Creator: Kennel, Elliot B.; Biedler, Philip L.; Chen, Chong; Dadyburjor, Dady; Magean, Liviu; Stansberry, Peter G. et al.
Partner: UNT Libraries Government Documents Department

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

Description: This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new ...
Date: August 31, 2004
Creator: Dadyburjor, Dady; Biedler, Philip R.; Chen, Chong; Clendenin, L. Mitchell; Katakdaunde, Manoj; Kennel, Elliot B. et al.
Partner: UNT Libraries Government Documents Department