8 Matching Results

Search Results

Advanced search parameters have been applied.

On the half-life of {sup 44}Ti

Description: One of the few long-lived gamma-ray emitting radioisotopes expected to be produced in substantial quantities during a supernova explosion is {sup 44}Ti. The relevant portions of the decay schemes of {sup 44}Ti and its daughter {sup 44}Sc are shown. {sup 44}Ti decays to {sup 44}Sc emitting {gamma} rays of 68 and 78 keV. {sup 44}Sc subsequently decays with a 3.93-hour half life to {sup 44}Ca emitting an 1,157-keV {gamma}ray. This characteristic 1,157-keV {gamma} ray from the decay of {sup 44}Ti has recently been observed from the supernova remnant Cas A. In order to compare the predicted {gamma}-ray flux to that actually observed from this remnant, one must know the half-life of {sup 44}Ti. However, published values for this quantity range from 46.4 to 66.6 years. Given that the Cas A supernova is believed to have occurred approximately 300 years ago, this translates to an uncertainty by a factor of 4 in the amount of {sup 44}Ti ejected by this supernova. Thus, in order to provide an accurate and reliable value for this important quantity, the authors have performed a new experiment to determine the half-life of {sup 44}Ti. The authors produced {sup 44}Ti via the {sup 45}Sc(p,2n) reaction using 40 MeV protons from the Lawrence Berkeley National Laboratory`s 88-Inch Cyclotron. In the present experiment, the authors attempted to use all three {sup 44}Ti {gamma}-ray lines to determine its half life. However, analysis of the {sup 241}Am and {sup 137}Cs lines produced an incorrect value for the half life of each of these isotopes. On the other hand, the analysis of the {sup 22}Na line produced a result that agreed to within 0.5% of the known value of 2.603 years. Thus, they decided to concentrate their effort on the analysis of the 1,157-keV line. The half life of {sup 44}Ti that ...
Date: June 19, 1996
Creator: Norman, E.B.; Browne, E.; Chan, Y.D.; Goldman, I.D.; Larimer, R.M.; Lesko, K.T. et al.
Partner: UNT Libraries Government Documents Department

Evaluation of radioactive background rejection in 76Ge neutrino-lessdouble-beta decay experiments using a highly segmented HPGe detector

Description: A highly segmented coaxial HPGe detector was operated in a low background counting facility for over 1 year to experimentally evaluate possible segmentation strategies for the proposed Majorana neutrino-less double-beta decay experiment. Segmentation schemes were evaluated on their ability to reject multi-segment events while retaining single-segment events. To quantify a segmentation scheme's acceptance efficiency the percentage of peak area due to single segment events was calculated for peaks located in the energy region 911-2614 keV. Single interaction site events were represented by the double-escape peak from the 2614 keV decay in {sup 208}Tl located at 1592 keV. In spite of its prototypical nature, the detector performed well under realistic operating conditions and required only minimal human interaction. Though the energy resolution for events with interactions in multiple segments was impacted by inter-segment cross-talk, the implementation of a cross-talk correlation matrix restored acceptable resolution. Additionally, simulations utilizing the MaGe simulation package were performed and found to be in good agreement with experimental observations verifying the external nature of the background radiation.
Date: February 5, 2007
Creator: Chan, Yuen-Dat; Campbell, D.B.; Vetter, K.; Henning, R.; Lesko, K.; Chan, Y.D. et al.
Partner: UNT Libraries Government Documents Department

A Search for Neutrinos from the Solar hep Reaction and the DiffuseSupernova Neutrino Background with the Sudbury Neutrino Observatory

Description: A search has been made for neutrinos from the hep reactionin the Sun and from the diffuse supernova neutrino background (DSNB)using data collected during the first operational phase of the SudburyNeutrino Observatory, with an exposure of 0.65 kilotonne-years. For thehep neutrino search, two events are observed in the effective electronenergy range of 14.3 MeV<Teff<20 MeV where 3.1 backgroundevents are expected. After accounting for neutrino oscillations, an upperlimit of 2.3 x 104 cm-2s-1 at the 90 percent confidence level is inferredon the integral total flux of hep neutrinos. For DSNB neutrinos, noevents are observed in the effective electron energy range of 21 MeV<Teff<35 MeV and, consequently, an upper limit on the nu e componentof the DSNB fluxin the neutrino energy range of 22.9 MeV<E nu<36.9 MeV of 70 cm-2-1 is inferred at the 90 percent confidence level.This is an improvement by a factor of 6.5 on the previous best upperlimit on the hep neutrino flux and by two orders of magnitude on theprevious upper limit on the nu e component of the DSNB flux.
Date: August 1, 2006
Creator: Aharmim, B.; Ahmed, S.N.; Anthony, A.E.; Beier, E.W.; Bellerive,A.; Bergevin, M. et al.
Partner: UNT Libraries Government Documents Department

Measurement of the nue and Total 8B Solar Neutrino Fluxes with theSudbury Neutrino Observatory Phase I Data Set

Description: This article provides the complete description of resultsfrom the Phase I data set of the Sudbury Neutrino Observatory (SNO). ThePhase I data set is based on a 0.65 kt-year exposure of heavy water tothe solar 8B neutrino flux. Included here are details of the SNO physicsand detector model, evaluations of systematic uncertainties, andestimates of backgrounds. Also discussed are SNO's approach tostatistical extraction of the signals from the three neutrino reactions(charged current, neutral current, and elastic scattering) and theresults of a search for a day-night asymmetry in the ?e flux. Under theassumption that the 8B spectrum is undistorted, the measurements fromthis phase yield a solar ?e flux of ?(?e) =1.76+0.05?0.05(stat.)+0.09?0.09 (syst.) x 106 cm?2 s?1, and a non-?ecomponent ?(? mu) = 3.41+0.45?0.45(stat.)+0.48?0.45 (syst.) x 106 cm?2s?1. The sum of these components provides a total flux in excellentagreement with the predictions of Standard Solar Models. The day-nightasymmetry in the ?e flux is found to be Ae = 7.0 +- 4.9 (stat.)+1.3?1.2percent (sys.), when the asymmetry in the total flux is constrained to bezero.
Date: February 1, 2007
Creator: Aharmim, B.; Ahmad, Q.R.; Ahmed, S.N.; Allen, R.C.; Andersen,T.C.; Anglin, J.D. et al.
Partner: UNT Libraries Government Documents Department

Neutrino observations from the Sudbury Neutrino Observatory

Description: The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.
Date: September 24, 2001
Creator: Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W. et al.
Partner: UNT Libraries Government Documents Department

Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

Description: Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} &gt; 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.
Date: February 16, 2009
Creator: collaboration, SNO; Aharmim, B.; Ahmed, S.N.; Andersen, T.C.; Anthony, A.E.; Barros, N. et al.
Partner: UNT Libraries Government Documents Department