12 Matching Results

Search Results

Advanced search parameters have been applied.

Problems in astrophysical radiation hydrodynamics

Description: The basic equations of radiation hydrodynamics are discussed in the regime that the radiation is dynamically as well as thermally important. Particular attention is paid to the question of what constitutes an acceptable approximate non-relativistic system of dynamical equations for matter and radiation in this regime. Further discussion is devoted to two classes of application of these ideas. The first class consists of problems dominated by line radiation, which is sensitive to the velocity field through the Doppler effect. The second class is of problems in which the advection of radiation by moving matter dominates radiation diffusion.
Date: September 14, 1983
Creator: Castor, J.I.
Partner: UNT Libraries Government Documents Department

Shock waves in luminous early-type stars

Description: Shock waves that occur in stellar atmospheres have their origin in some hydrodynamic instability of the atmosphere itself or of the stellar interior. In luminous early-type stars these two possibilities are represented by shocks due to an unstable radiatively-accelerated wind, and to shocks generated by the non-radial pulsations known to be present in many or most OB stars. This review is concerned with the structure and development of the shocks in these two cases, and especially with the mass loss that may be due specifically to the shocks. Pulsation-produced shocks are found to be very unfavorable for causing mass loss, owing to the great radiation efficiency that allows them to remain isothermal. The situation regarding radiatively-driven shocks remains unclear, awaiting detailed hydrodynamics calculations. 20 refs., 2 figs.
Date: July 1, 1986
Creator: Castor, J.I.
Partner: UNT Libraries Government Documents Department

Radiation Hydrodynamics

Description: The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it ...
Date: October 16, 2003
Creator: Castor, J. I.
Partner: UNT Libraries Government Documents Department

Astrophysical Radiation Hydrodynamics: The Prospects for Scaling

Description: The general principles of scaling are discussed, followed by a survey of the important dimensionless parameters of fluid dynamics including radiation and magnetic fields, and of non-LTE spectroscopy. The values of the parameters are reviewed for a variety of astronomical and laboratory environments. It is found that parameters involving transport coefficients--the fluid and magnetic Reynolds numbers--have enormous values for the astronomical problems that are not reached in the lab. The parameters that measure the importance of radiation are also scarcely reached in the lab. This also means that the lab environments are much closer to LTE than the majority of astronomical examples. Some of the astronomical environments are more magnetically dominated than anything in the lab. The conclusion is that a good astronomical environment for simulation in a given lab experiment can be found, but that the reverse is much more difficult.
Date: May 25, 2006
Creator: Castor, J I
Partner: UNT Libraries Government Documents Department

Time-dependent mass loss from hot stars with and without radiative driving

Description: A numerical hydrodynamics code is used to investigate two aspects of the winds of hot stars. The first is the question of the instability of the massive radiatively-driven wind of an O star that is caused by the line shape mechanism: modulation of the radiation force by velocity fluctuations. The evolution of this instability is studied in a model O star wind, and is found, /ital modulo/ some numerical uncertainty, to lead to wave structures that are compatible with observations of wind instabilities. The other area of investigation is of main-sequence B star winds. Attempts were made to simulate a radiatively-driven and a pulsation-driven wind in a B star, but in each case the wind turned out to be very weak. It is argued that the pulsation-driven wind model is not likely to apply to B stars. 28 refs., 11 figs.
Date: January 29, 1988
Creator: Castor, J.I.; Owocki, S.P. & Rybicki, G.B.
Partner: UNT Libraries Government Documents Department

The origin and development of instabilities in radiatively-driven stellar winds

Description: The numerous observational indicators of instability in the radiatively-driven winds of hot stars are review briefly, followed by a summary of the present theoretical understanding of the linear instability of such winds. This provides the motivation for the hydrodynamic simulation, the major thrust of the paper. A serious approximation that must be made in order to reduce the cost of the simulations to a reasonable level--the absorption approximation for the radiation force--is discussed in some detail. The hydrodynamic methods are described briefly, and then the computational results for winds models computed in the absorption approximation are discussed. The most notable results pertain to the critical nature of the ratio v{sub th}/a of the intrinsic line width to the sound speed. When this ratio is large, only a negligible wind results; when the ratio is small, the wind executes permanent self-excited oscillations; in an intermediate range the wind is globally stable, but acts as a powerful wave amplifier. The morphology of the oscillations--strong rarefactions and reverse shocks--is described and related to Abbott's linear theory, and the possible connection to observations is mentioned. 30 refs.
Date: November 20, 1990
Creator: Castor, J.I.
Partner: UNT Libraries Government Documents Department

Understanding the anomalous dispersion of doubly-ionized carbon plasmas near 47 nm

Description: Over the last several years we have predicted and observed plasmas with an index of refraction greater than one in the soft X-ray regime. These plasmas are usually a few times ionized and have ranged from low-Z carbon plasmas to mid-Z tin plasmas. Our main calculational tool has been the average atom code. We have recently observed C{sup 2+} plasmas with an index of refraction greater than one at a wavelength of 46.9 nm (26.44 eV). In this paper we compare the average atom method, AVATOMKG, against two more detailed methods, OPAL and CAK, for calculating the index of refraction for the carbon plasmas and discuss the different approximations used. We present experimental measurements of carbon plasmas that display this anomalous dispersion phenomenon. It is shown that the average atom calculation is a good approximation when the strongest lines dominate the dispersion. However, when weaker lines make a significant contribution, the more detailed calculations such as OPAL and CAK are essential. During the next decade X-ray free electron lasers and other X-ray sources will be available to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential. With the advent of tunable X-ray lasers the frequency dependent interferometer measurements of the index of refraction may enable us to determine the absorption coefficients and line-shapes and make detailed comparisons against our atomic physics codes.
Date: April 15, 2008
Creator: Nilsen, J; Castor, J I; Iglesias, C A; Cheng, K T; Dunn, J; Johnson, W R et al.
Partner: UNT Libraries Government Documents Department

2-D axisymmetric line transport

Description: The methods used in the ALTAIR code for computing the transfer of spectral line radiation in two-dimensional axially-symmetric geometry are described. ALTAIR uses a variable-Eddington-tensor approach, in which the transfer equation of non-coherent line scattering is written in moment form, and the moments are closed with an assumed tensor relating the monochromatic pressure tensor and energy density; this Eddington tensor is obtained self-consistently using an accurate angle-dependent solution of the transfer equation. The finite element method for solving the moment system, and the discontinuous finite element method for solving the S{sub n} equation of transfer are described. Two applications of the method are discussed: line formation in uniform cylinders with different length-diameter ratios, and monochromatic transfer on an irregular x-y mesh (the Mordant test problem). 13 refs., 2 figs.
Date: November 20, 1990
Creator: Castor, J.I.; Dykema, P.G. (Lawrence Livermore National Lab., CA (USA)) & Klein, R.I. (Lawrence Livermore National Lab., CA (USA) California Univ., Berkeley, CA (USA). Dept. of Astronomy)
Partner: UNT Libraries Government Documents Department