21 Matching Results

Search Results

Advanced search parameters have been applied.

p{sub T} dependence of inclusive Z boson production

Description: We present preliminary results for the measurement of [1/{sigma}]d{sigma}/dp{sub T} for the Z boson observed in the e{sup +}e{sup -} channel for p{sub T} < 50 GeV/c. The data are from a luminosity of {approximately} 90 pb{sup -1} collected with the D0 detector during the 1994-1995 Tevatron run. The differential spectrum is sensitive to non-perturbative predictions of QCD. 3 refs., 1 fig.
Date: September 1, 1996
Creator: Casey, D.P. & Collaboration, The D0
Partner: UNT Libraries Government Documents Department

Cosmic ray test results of the DO prototype scintillating fiber tracker

Description: The performance of a large scale scintillating fiber tracker with VLPC readout has been studied in a cosmic-ray test. Approximately 9.6 photoelectrons per single layer per trigger were detected at a VLPC bias voltage of 6.5V. The doublet efficiency was nearly 100% at a 0.1% noise level and a position resolution of about 140{mu}m was measured. The authors also studied the relationship between VLPC performance and VLPC bias voltage by measuring single fiber efficiency as a function of VLPC bias in the range 6.2V to 7.0V at a fixed temperature of 6.5{degrees}K. They observed no significant variation in VLPC performance within this bias range.
Date: January 1, 1995
Creator: Adams, D.; Bertram, I.; Adams, M.; Chung, M.; Baumbaugh, B.; Bross, A. et al.
Partner: UNT Libraries Government Documents Department

Study of SCTI Control System

Description: Introduction: This report has been prepared to document the extensive analytical work required to design the control system for the Sodium Components Test Installation (SCTI), constructed for the Atomic Energy Commission at the Atomics International field laboratory.
Date: December 1, 1964
Creator: Griffin, C. W.
Partner: UNT Libraries Government Documents Department

Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

Description: A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.
Date: May 3, 2012
Creator: Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K et al.
Partner: UNT Libraries Government Documents Department

Compact proton spectrometers for measurements of shock

Description: The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign (NIC) diagnostic. The WRF measures the spectrum of protons from D-{sup 3}He reactions in tuning-campaign implosions containing D and {sup 3}He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total {rho}R through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.
Date: May 2, 2012
Creator: Mackinnon, A; Zylstra, A; Frenje, J A; Seguin, F H; Rosenberg, M J; Rinderknecht, H G et al.
Partner: UNT Libraries Government Documents Department

Neutron spectrometry - An essential tool for diagnosing implosions at the National Ignition Facility

Description: DT neutron yield (Y{sub n}), ion temperature (T{sub i}) and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-Time-Of-Flight (nTOF) spectrometers and a Magnetic Recoil Spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the redundancy required for reliable measurements of Yn, Ti and dsr. From the measured dsr value, an areal density ({rho}R) is determined from the relationship {rho}R{sub tot} (g/cm{sup 2}) = (20.4 {+-} 0.6) x dsr{sub 10-12 MeV}. The proportionality constant is determined considering implosion geometry, neutron attenuation and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration. The spectrometers are now performing to the required accuracy, as indicated by the good agreement between the different measurements over several commissioning shots. In addition, recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental Ignition Threshold Factor (ITFx) which is a function of dsr (or fuel {rho}R) and Y{sub n}, has improved almost two orders of magnitude since the first shot in September, 2010.
Date: May 2, 2012
Creator: Mackinnon, A J; Johnson, M G; Frenje, J A; Casey, D T; Li, C K; Seguin, F H et al.
Partner: UNT Libraries Government Documents Department