4 Matching Results

Search Results

Advanced search parameters have been applied.

A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR

Description: SRD tested a number of different length cavities during this past quarter. Continuous transmission was observed with cavity lengths from 65 to 12 cm. The 65 cm cavity was replaced with a 39 cm cavity for work performed during this quarter. Flue gas components were tested for background absorptions and any interference with the determination of accurate mercury concentrations. Sulfur dioxide was found to absorb fairly strongly in the region of the mercury transition, but the Cavity Ring-Down (CRD) instrument was still able to detect mercury at subparts-per-billion by volume (ppb) levels. Additional flue gases tested included H{sub 2}O, CO, CO{sub 2}, NO, NO{sub 2}. None of these flue gas constituents showed any observable absorption in the ultraviolet region near the atomic mercury transition. Work was also initiated in speciation studies. In particular mercury chloride (HgCl{sub 2}) was tested. A mercury signal was detected from a gas stream containing HgCl{sub 2}. SRD was not able to determine definitively if there exists a spectral shift great enough to separate HgCl{sub 2} from elemental mercury in these initial tests.
Date: December 31, 2002
Creator: Carter, Christopher C.
Partner: UNT Libraries Government Documents Department

A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR

Description: The construction of the sampling system was completed during the past quarter. The sampling system has been built on a 3 feet x 4 feet x 2 inch breadboard table. The laser system, all the associated optics, and the mounts and hardware needed to couple the UV light into the fiber optic have also been condensed and placed on an identical 3 feet x 4 feet x 2 inch breadboard table. This reduces the footprint of each system for ease of operation at a field test facility. The two systems are only connected with a fiber optic, to bring the UV light to the CRD cavity, and a single coaxial cable used to apply a voltage to the diode seed laser to scan the frequency over the desired mercury transition. SRD software engineers applied a couple of software fixes to correct the problems of the diode seed laser drifting or mode hopping. Upon successful completion of the software fixes another long-term test was conducted. A nearly 3 day long, 24 hours/day, test was run to test out the new subroutines. Everything appeared to work as it should and the mercury concentrations were accurately reported for the entire test, with the exception of a small interval of time when the intensity of the UV light dropped low enough that the program was no longer triggering properly. After adjusting the power of the laser the program returned to proper operation. With the successful completion of a relatively long test SRD software engineer incorporated the new subroutine into an entirely new program. This program operates the CRD instrument automatically as a continuous emissions monitor for mercury. In addition the program also reports the concentration of SO{sub 2} determined in the sample flue gas stream. Various functions, operation of, and a description of the ...
Date: March 31, 2004
Creator: Carter, Christopher C.
Partner: UNT Libraries Government Documents Department

A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR

Description: The work performed during this quarter by SRD scientists and engineers focused on a number of tasks. The initial acquisition of some hardware needed and the actual construction of the sampling system have begun. This sampling system will contain the pyrolysis oven to atomize the sample gas stream needed for total gaseous mercury measurements, the CRD cavity to acquire the ring-down signal needed to obtain the mercury concentration, various tubing, and temperature and pressure measurement equipment. The amount of tubing and valves have been cut to a minimum to try and reduce the resident time the sample flue gas stream is in the sampling system and minimize the possibility that the gases in the sample gas stream will react with the elements of the sampling system and change the component mixture contained in the flue gas. In an effort to minimize the equipment that needs to be close to the actual sampling port, SRD scientists decided to fiber optically couple the laser to the CRD cavity. However, the ultra-violet (UV) light needed for the mercury transition presents a problem as fiber optics can be solarized by the UV radiation thereby changing the transmission characteristics. SRD has obtained a solarization-resistant fiber. SRD scientists were then able to couple the UV laser light into the fiber and inject the output of the fiber into the CRD cavity and obtain a ring-down signal. Long-term effects of the UV radiation on the fiber optic are being monitored to detect any change in the transmission of the laser light to the cavity. Additional requirements of the mercury CRD monitor will be to not only monitor the mercury concentration continuously but also perform the measurements over extended periods of time. SRD has extended some previously performed shorter-term studies to longer time intervals. The results of these ...
Date: September 30, 2003
Creator: Carter, Christopher C.
Partner: UNT Libraries Government Documents Department

A Cavity Ring-Down Spectroscopy Mercury Continuous Emission Monitor

Description: The Sensor Research & Development Corporation (SRD) has undertaken the development of a Continuous Emissions Monitor (CEM) for mercury based on the technique of Cavity Ring-Down Spectroscopy (CRD). The project involved building an instrument for the detection of trace levels of mercury in the flue gas emissions from coal-fired power plants. The project has occurred over two phases. The first phase concentrated on the development of the ringdown cavity and the actual detection of mercury. The second phase dealt with the construction and integration of the sampling system, used to carry the sample from the flue stack to the CRD cavity, into the overall CRD instrument. The project incorporated a Pulsed Alexandrite Laser (PAL) system from Light Age Incorporated as the source to produce the desired narrow band 254 nm ultra-violet (UV) radiation. This laser system was seeded with a diode laser to bring the linewidth of the output beam from about 150 GHz to less than 60 MHz for the fundamental beam. Through a variety of non-linear optics the 761 nm fundamental beam is converted into the 254 nm beam needed for mercury detection. Detection of the mercury transition was verified by the identification of the characteristic natural isotopic structure observed at lower cavity pressures. The five characteristic peaks, due to both natural isotopic abundance and hyperfine splitting, provided a unique identifier for mercury. SRD scientists were able to detect mercury in air down below 10 parts-per-trillion by volume (pptr). This value is dependent on the pressure and temperature within the CRD cavity at the time of detection. Sulfur dioxide (SO{sub 2}) absorbs UV radiation in the same spectral region as mercury, which is a significant problem for most mercury detection equipment. However, SRD has not only been able to determine accurate mercury concentrations in the presence of SO{sub ...
Date: December 15, 2004
Creator: Carter, Christopher C.
Partner: UNT Libraries Government Documents Department