17 Matching Results

Search Results

Advanced search parameters have been applied.

Rovibrational spectroscopy of ArCO van der Waals complex

Description: The information that can be obtained from the high resolution rovibrational spectra of small molecular clusters is very useful for determining intermolecular potentials and the effects of intermolecular interactions on intramolecular bonds. Recently, such spectra have been obtained via absorption measurements using F-center, frequency difference and diode laser sources. Because F-center and frequency difference lasers operate best in the 2-4 ..mu..m region, studies using these laser sources have involved high frequency vibrational modes (H-X, X-C,F,Cl,Br) or overtones. Although diode lasers cover a much broader spectral range (3-20 ..mu..m), they are less convenient to use for doing survey spectroscopy. We have developed several new techniques which improve the sensitivity and convenience of absorption measurements using diode lasers for the study of molecular clusters in supersonic expansions. Here we describe these techniques and their application for the measurement of the rovibrational spectra of ArCO near 5 ..mu..m. 11 refs., 4 figs., 1 tab.
Date: January 1, 1987
Creator: Campbell, E.J.; De Piante Johnston, A. & Buelow, S.J.
Partner: UNT Libraries Government Documents Department

Enhanced sludge processing of HLW: Hydrothermal oxidation of chromium, technetium, and complexants by nitrate. 1997 mid-year progress report

Description: 'Treatment of High Level Waste (HLW) is the second most costly problem identified by OEM. In order to minimize costs of disposal, the volume of HLW requiring vitrification and long term storage must be reduced. Methods for efficient separation of chromium from waste sludges, such as the Hanford Tank Wastes (HTW), are key to achieving this goal since the allowed level of chromium in high level glass controls waste loading. At concentrations above 0.5 to 1.0 wt.% chromium prevents proper vitrification of the waste. Chromium in sludges most likely exists as extremely insoluble oxides and minerals, with chromium in the plus III oxidation state [1]. In order to solubilize and separate it from other sludge components, Cr(III) must be oxidized to the more soluble Cr(VI) state. Efficient separation of chromium from HLW could produce an estimated savings of $3.4B[2]. Additionally, the efficient separation of technetium [3], TRU, and other metals may require the reformulation of solids to free trapped species as well as the destruction of organic complexants. New chemical processes are needed to separate chromium and other metals from tank wastes. Ideally they should not utilize additional reagents which would increase waste volume or require subsequent removal. The goal of this project is to apply hydrothermal processing for enhanced chromium separation from HLW sludges. Initially, the authors seek to develop a fundamental understanding of chromium speciation, oxidation/reduction and dissolution kinetics, reaction mechanisms, and transport properties under hydrothermal conditions in both simple and complex salt solutions. The authors also wish to evaluate the potential of hydrothermal processing for enhanced separations of technetium and TRU by examining technetium and TRU speciation at hydrothermal conditions optimal for chromium dissolution.'
Date: June 1, 1997
Creator: Buelow, S.
Partner: UNT Libraries Government Documents Department

Hydrothermal oxidation of organic wastes using reclaimed ammonium nitrate

Description: Ammonium nitrate is being studied as an alternative for ammonium perchlorate as an oxidizing agent in Department of Defense 1.1 and 1.3 rocket propellants. Use of ammonium nitrate would eliminate the HCl produced by ammonium perchlorate upon thermal decomposition. To stabilize the ammonium nitrate, which suffers from phase instability, potassium dinitramide (KDN) is added. This increased use of ammonium nitrate will ultimately create a need for environmentally responsible processes to reuse ammonium nitrate extracted from demilitarized rocket motors. Ammonium Nitrate was investigated as an oxidizing agent for methanol, acetic acid and phenol. High removal of organic, ammonia and nitrate was achieved at stoichiometric concentrations. The oxidation of ammonia by nitrate was much faster than the oxidation of either methanol or acetic acid. Phenol, however, was in strong competition with ammonia for the oxidizer (nitrate). Nitrogen products included N{sub 2}, N{sub 2}O, NO{sub 2{sup {minus}}} as well as toxic NO and trace amounts of NO{sub 2}. Carbon products were CO{sub 2}, HCO{sub 3{sup {minus}}}, CO{sub 3}{sup 2{minus}}, and CO.
Date: April 1, 1996
Creator: Proesmans, P.I.; Luan, L. & Buelow, S.J.
Partner: UNT Libraries Government Documents Department

Final report on the oxidation of energetic materials in supercritical water. Final Air Force report

Description: The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, and models for process design and optimization.
Date: April 3, 1995
Creator: Buelow, S.J.; Allen, D. & Anderson, G.K.
Partner: UNT Libraries Government Documents Department

Enhanced sludge processing of HLW: Hydrothermal oxidation of chromium, technetium, and complexants by nitrate. 1998 annual progress report

Description: 'The objective of this project is to develop the scientific basis for hydrothermal separation of chromium from High Level Waste (HLW) sludges. The worked is aimed at attaining a fundamental understanding of chromium speciation, oxidation/reduction and dissolution kinetics, reaction mechanisms, and transport properties under hydrothermal conditions in both simple and complex salt solutions that will ultimately lead to an efficient chromium leaching process. This report summarizes the research over the first 1.5 years of a 3 year project. The authors have examined the dissolution of chromium hydroxide using different oxidants as a function of temperature and alkalinity. The results and possible applications to HLW sludges are discussed'
Date: June 1, 1998
Creator: Buelow, S.J. & Robinson, J.M.
Partner: UNT Libraries Government Documents Department

Mass transfer of SCWO processes: Molecular diffusion and mass transfer coefficients of inorganic nitrate species in sub- and supercritical water

Description: Molecular diffusion coefficients of lithium-, sodium-, potassium-, cesium-, calcium-, and strontium nitrate in subcritical water were determined by analysis of Taylor dispersion profiles. Pressures ranged from 300 to 500 bar at temperatures ranging from 25{degrees}C to 300{degrees}C. The reported diffusion values were determined at infinite dilution. Molecular diffusion coefficients were 10 to 20 times faster in near-critical subcritical water than in water at ambient temperature and pressure (ATP). These findings implied that the diffusion rates were more liquid like than they were gas like, hence experimental results were correlated with diffusion models for liquids. The subcritical diffusion data presented in this work, and supercritical diffusion results published elsewhere were correlated with hydrodynamic diffusion equations. Both the Wilke-Chang correlation and the Stokes-Einstein equation yielded predictions within 10% of the experimental results if the structure of the diffusing species could be estimated. The effect of the increased diffusion rates on mass transfer rates in supercritical water oxidation applications was quantified, with emphasis on heterogeneous oxidation processes. This study and results published elsewhere showed that diffusion limited conditions are much more likely to be encountered in SCWO processes than commonly acknowledged.
Date: April 1, 1996
Creator: Goemans, M.G.E.; Gloyna, E.F. & Buelow, S.J.
Partner: UNT Libraries Government Documents Department

Hydrothermal oxidation of ammonia/organic waste mixtures

Description: Hydrothermal oxidation is a promising new technology for the treatment of radioactive contaminated hazardous organic wastes. Los Alamos National Laboratory is currently evaluating this technology for the U. S. Department of Energy. In this paper, we present experimental results from the study of the hydrothermal oxidation of an ammonia/alcohol/uranium waste mixture. The use of a co-oxidant system consisting of hydrogen peroxide combined with nitrate is discussed. Experiments demonstrate near complete destruction of ammonia and organic compounds at 500{degrees} C, 38 MPa, and 50 seconds reaction time. The ammonia and total organic carbon (TOC) concentrations in a waste simulant is reduced from 8,500 mg/L of ammonia and 12,500 mg/L TOC to 30 mg/L ammonia and less than 10 mg/L TOC. The major reaction products are CO{sub 2}, N{sub 2}, and a small amount of N{sub 2}O. Comparison experiments with nitrate and hydrogen peroxide used individually show the advantage of the co-oxidant system.
Date: May 1, 1997
Creator: Luan, Li; Proesmans, P.I. & Buelow, S.J.
Partner: UNT Libraries Government Documents Department

Modification of heterogeneous chemistry by complex substrate morphology

Description: This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Chemistry in many environmental systems is determined at some stage by heterogeneous reaction with a surface. Typically the surface exists as a dispersion or matrix of particulate matter or pores, and a determination of the heterogeneous chemistry of the system must address the extent to which the complexity of the environmental surface affects the reaction rates. Reactions that are of current interest are the series of chlorine nitrate reactions important in polar ozone depletion. The authors have applied surface spectroscopic techniques developed at LANL to address the chemistry of chlorine nitrate reactions on porous nitric and sulfuric acid ice surfaces as a model study of the measurement of complex, heterogeneous reaction rates. The result of the study is an experimental determination of the surface coverage of one adsorbed reagent and a mechanism of reactivity based on the dependence of this coverage on temperature and vapor pressure. The resulting mechanism allows the first comprehensive modeling of chlorine nitrate reaction probability data from several laboratories.
Date: December 31, 1998
Creator: Henson, B.F.; Buelow, S.J. & Robinson, J.M.
Partner: UNT Libraries Government Documents Department

Hydrothermal processing of radioactive combustible waste

Description: Hydrothermal processing has been demonstrated for the treatment of radioactive combustible materials for the US Department of Energy. A hydrothermal processing system was designed, built and tested for operation in a plutonium glovebox. Presented here are results from the study of the hydrothermal oxidation of plutonium and americium contaminated organic wastes. Experiments show the destruction of the organic component to CO{sub 2} and H{sub 2}O, with 30 wt.% H{sub 2}O{sub 2} as an oxidant, at 540 C and 46.2 MPa. The majority of the actinide component forms insoluble products that are easily separated by filtration. A titanium liner in the reactor and heat exchanger provide corrosion resistance for the oxidation of chlorinated organics. The treatment of solid material is accomplished by particle size reduction and the addition of a viscosity enhancing agent to generate a homogeneous pumpable mixture.
Date: September 1, 1998
Creator: Worl, L. A.; Buelow, S. J.; Harradine, D.; Le, L.; Padilla, D. D. & Roberts, J. H.
Partner: UNT Libraries Government Documents Department

Chemical conversions in supercritical media: Environmentally sound approaches to processes and materials

Description: This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The aim of this effort was to evaluate the potential of supercritical fluids (SCF) as reaction media in an effort to develop new, environmentally-friendly methods for chemical synthesis or processing. The use of novel media creates the possibility of opening up substantially different chemical pathways, increasing selectivity (eliminating waste by-products), and enhancing reaction rates (decreasing hold-up times and saving energy). In addition, the use of SCF as reaction media facilitates downstream separations and mitigate or eliminate the need for hazardous solvents on scales from bench top to production. This project employed a highly interdisciplinary approach to investigate the utility of SCFs as reaction media for polymer synthesis and synthetic organic chemistry.
Date: July 1, 1996
Creator: Burns, C.; Borkowsky, S.; Buelow, S.; Langlois, D.; LeLacheur, R.; Mitchell, M. et al.
Partner: UNT Libraries Government Documents Department

Hydrothermal processing of inorganic components of Hanford tank sludge

Description: Hydrothermal Processing (HTP) is an attractive approach for the treatment of Hanford tank sludge. Hydrothermal Processing refers to a waste treatment technique in which an aqueous waste stream is fed through a chemical reactor at elevated temperatures and pressures to effect desired chemical transformations and separations. Transformations such as organic and nitrate destruction and sludge reformulation have been demonstrated at pilot scale using simulants of Hanford tank wastes. At sufficiently high temperatures and pressures organics and nitrates are destroyed in seconds, producing primarily simple products such as CO{sub 3}{sup 2{minus}}, H{sub 2}O, N{sub 2}, N{sub 2}O and OH{sup {minus}}, and sludges are reduced in volume and reformulated as rapid settling oxides amenable to downstream separation, or in some cases reformulated as soluble products. This report describes the hydrothermal dissolution of chromium and chromium oxide; the hydrothermal oxidation of chromium with nitrate; hydrothermal dissolution of aluminum-bearing sludges; the solubility of aluminum compounds in caustic hydrothermal media; experimental techniques for the study of solubility and phase behavior; optical cell studies of basic aluminate solution solubilities; and high temperature, low density salt solubility in the packed-bed flow apparatus.
Date: September 1, 1994
Creator: Oldenborg, R.; Buelow, S. J.; Dyer, R. B.; Anderson, G.; Dell`Orco, P. C.; Funk, K. et al.
Partner: UNT Libraries Government Documents Department

Reduction of nitrate and nitrite salts under hydrothermal conditions

Description: The feasibility of reducing nitrate/nitrite salts under hydrothermal conditions for the treatment of aqueous mixed wastes stored in the underground tanks at the Department of Energy site at Hanford, Washington was studied. The reduction of nitrate and nitrite salts by reaction with EDTA using a tank waste simulant was examined at temperatures between 623K and 800K and pressures between 0.6 and 1.2 kbar. Continuous flow reactors were used to determine kinetics and products of reactions. All reactions were studied under pressures high enough to produce single phase conditions. The reactions are rapid, go to completion in less than a minute, and produce simple products, such as carbonate, nitrogen, and nitrous oxide gases. The experimental results demonstrate the ability of chemical reactions under hydrothermal conditions to reduce the nitrate and nitrite salts and destroy organic compounds in the waste mixtures.
Date: October 1, 1994
Creator: Foy, B. R.; Dell`Orco, P. C.; Wilmanns, E.; McInroy, R.; Ely, J.; Robinson, J. M. et al.
Partner: UNT Libraries Government Documents Department

Integration of advanced nuclear materials separation processes

Description: This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project has examined the fundamental chemistry of plutonium that affects the integration of hydrothermal technology into nuclear materials processing operations. Chemical reactions in high temperature water allow new avenues for waste treatment and radionuclide separation.Successful implementation of hydrothermal technology offers the potential to effective treat many types of radioactive waste, reduce the storage hazards and disposal costs, and minimize the generation of secondary waste streams. The focus has been on the chemistry of plutonium(VI) in solution with carbonate since these are expected to be important species in the effluent from hydrothermal oxidation of Pu-containing organic wastes. The authors investigated the structure, solubility, and stability of the key plutonium complexes. Installation and testing of flow and batch hydrothermal reactors in the Plutonium Facility was accomplished. Preliminary testing with Pu-contaminated organic solutions gave effluent solutions that readily met discard requirements. A new effort in FY 1998 will build on these promising initial results.
Date: December 31, 1998
Creator: Jarvinen, G.D.; Worl, L.A.; Padilla, D.D.; Berg, J.M.; Neu, M.P.; Reilly, S.D. et al.
Partner: UNT Libraries Government Documents Department

Destruction of nitrates, organics, and ferrocyanides by hydrothermal processing

Description: This work targets the remediation of the aqueous mixed wastes stored in the underground tanks at the Department of Energy site in Hanford, Washington via hydrothermal processing. The feasibility of destroying the nitrate, organic, and ferrocyanide components of the wastes under supercritical and near critical conditions (623 {degree}K to 873{degree}K, 22.1 MPa to 103.4 MPa) is addressed. A novel method was developed for determining the solubility of nitrate salts in supercritical water solutions at pressures ranging from 24.8 MPa to 30.3 MPa (3600 psi to 4400 psi) and temperatures from 723 {degree}K to 798 {degree}K. Sodium nitrate solubilities ranged from 293 mg/kg at 24.8 MPa and 798 {degree}K to 1963 mg/kg at 30.3 MPa and 723{degree}K. Solubility was found to vary directly with pressure, and inversely with temperature. An empirical relationship was developed for the estimation of sodium nitrate solubility at water densities between 0.08 and 0.16 kg/L and temperatures between 723{degree}K and 798{degree}K. A small volume batch reactor equipped with optical diagnostics was used to monitor the phase behavior of a diluted variant of a tank 101-SY simulant. Preliminary results suggest that a single phase is formed at 83 MPa at 773 {degree}K.
Date: March 1, 1993
Creator: Robinson, J. M.; Foy, B. R.; Dell`Orco, P. C.; Anderson, G.; Archuleta, F.; Atencio, J. et al.
Partner: UNT Libraries Government Documents Department

Destruction of nitrates, organics, and ferrocyanides by hydrothermal processing

Description: This work targets the remediation of the aqueous mixed wastes stored in the underground tanks at the Department of Energy site in Hanford, Washington via hydrothermal processing. The feasibility of destroying the nitrate, organic, and ferrocyanide components of the wastes under supercritical and near critical conditions (623 [degree]K to 873[degree]K, 22.1 MPa to 103.4 MPa) is addressed. A novel method was developed for determining the solubility of nitrate salts in supercritical water solutions at pressures ranging from 24.8 MPa to 30.3 MPa (3600 psi to 4400 psi) and temperatures from 723 [degree]K to 798 [degree]K. Sodium nitrate solubilities ranged from 293 mg/kg at 24.8 MPa and 798 [degree]K to 1963 mg/kg at 30.3 MPa and 723[degree]K. Solubility was found to vary directly with pressure, and inversely with temperature. An empirical relationship was developed for the estimation of sodium nitrate solubility at water densities between 0.08 and 0.16 kg/L and temperatures between 723[degree]K and 798[degree]K. A small volume batch reactor equipped with optical diagnostics was used to monitor the phase behavior of a diluted variant of a tank 101-SY simulant. Preliminary results suggest that a single phase is formed at 83 MPa at 773 [degree]K.
Date: January 1, 1993
Creator: Robinson, J.M.; Foy, B.R.; Dell'Orco, P.C.; Anderson, G.; Archuleta, F.; Atencio, J. et al.
Partner: UNT Libraries Government Documents Department

Destruction of explosives and rocket fuels by supercritical water oxidation

Description: Traditional methods for disposing of PEPs have been open burning or open detonation (OB/OD); however, regulatory agencies are likely to prohibit OB/OD because of the uncontrolled air emissions and soil contaminations. Likewise, controlled incineration carries a liability for air pollution because large quantities of NO{sub x} are produced in the conventional combustion chemistry of PEPS. Soil and ground water have already been contaminated with PEPs through normal operations at manufacturing plants and military bases. Incineration can be used for decontamination of these soils, with the associated liability for air pollution, but few satisfactory and economic methods exist for ground water decontamination. A clear need exists for improved disposal and destruction methods. The destruction of energetic materials, including propellants, explosives and pyrotechnics (PEPS) by oxidation in supercritical water is described. The focus is on the chemistry of the process. The destruction efficiencies and products of reaction contained in the aqueous and gaseous effluents of several representative PEPs are reported.
Date: September 1, 1992
Creator: Dyer, R. B.; Buelow, S. J.; Harradine, D. M.; Robinson, J. M.; Foy, B. R.; Atencio, J. H. et al.
Partner: UNT Libraries Government Documents Department

Destruction of explosives and rocket fuels by supercritical water oxidation

Description: Traditional methods for disposing of PEPs have been open burning or open detonation (OB/OD); however, regulatory agencies are likely to prohibit OB/OD because of the uncontrolled air emissions and soil contaminations. Likewise, controlled incineration carries a liability for air pollution because large quantities of NO{sub x} are produced in the conventional combustion chemistry of PEPS. Soil and ground water have already been contaminated with PEPs through normal operations at manufacturing plants and military bases. Incineration can be used for decontamination of these soils, with the associated liability for air pollution, but few satisfactory and economic methods exist for ground water decontamination. A clear need exists for improved disposal and destruction methods. The destruction of energetic materials, including propellants, explosives and pyrotechnics (PEPS) by oxidation in supercritical water is described. The focus is on the chemistry of the process. The destruction efficiencies and products of reaction contained in the aqueous and gaseous effluents of several representative PEPs are reported.
Date: January 1, 1992
Creator: Dyer, R.B.; Buelow, S.J.; Harradine, D.M.; Robinson, J.M.; Foy, B.R.; Atencio, J.H. et al.
Partner: UNT Libraries Government Documents Department