22 Matching Results

Search Results

Advanced search parameters have been applied.

Synthesis and 2-D NMR Analysis of a New Phenyl-Substituted Polycyclic Compound

Description: Diels-Alder [4+2] cycloaddition of a mixture of 1- and 2 methylcyclopentadiene to 2-phenyl-g.-benzoquinone affords a mixture of four nd cycloadducts. A single, isomerically pure cycloadduct was isolated by careful column chromatography. Stereospecific reduction of this material with sodium borohydride and cerium(III) chloride 'affords a single, isomerically pure tricyclic diol. The structures of the cycloadduct and this tricyclic diol, established via analysis of their one- and two-dimensionial NMR spectra, were shown to be (1-methyl-5-phenyltricyclo[,7]undec a-4,9 diene-3,6-dione and 1-methyl-5-phenyltricyclo[ 2 ,7 ]undeca-4,9-diene t.&A-3-=.a-6-diol), respectively. Intramolecular [2+2] photocyclization of this tricyclic diol afforded the corresponding cage diol, 3-methyl-7phenylpentacyclo[ 2 ,6 .03 , 1 0 .05, 9 ]undecane-.exogxa-8,11-diol. Oxidation of this cage diol with pyridinium chlorochromate in dry dichloromethane afforded a single, isomerically pure cage hydroxyketone, 3-methyl-7 phenylpentacyclo[5.4.02,6.03,l .1519]undecane-xA-8-ol-II-one, whose structure was established by single crystal X-ray crystallographic methods.
Date: May 1991
Creator: Tsay, Fuh-Rong
Partner: UNT Libraries

Static and Flow Properties of Dilute Polymer Solutions

Description: Small weight percentages of certain high-molecular weight polymers added to liquids in turbulent flow through conduits can result in dramatic friction reduction. Although many current and potential uses of the drag reduction phenomenon exist, there is a fundamental problem: drag reduction efficacy decreases rapidly with flow time due to the mechanical degradation in flow of the added polymer. In this thesis study, dilute aqueous solutions of polyacrylamide were tested under turbulent flow conditions in an attempt to determine where mechanical degradation in flow occurs.
Date: August 1991
Creator: Whang, Kyu-ho
Partner: UNT Libraries

Waste Materials from Tetra Pak Packages as Reinforcement of Polymer Concrete

Description: This article discusses how compressive and flexural strength and modulus of elasticity decrease gradually, when either Tetra Pak particle concentration or particle size is increased.
Date: September 28, 2015
Creator: Martínez-López, Miguel; Martínez-Barrera, Gonzalo; Barrera-Díaz, Carlos; Ureña-Núñez, Fernando & Brostow, Witold, 1934-
Partner: UNT College of Engineering

Atomistic Computer Simulations of Diffusion Mechanisms in Lithium Lanthanum Titanate Solid State Electrolytes for Lithium Ion Batteries

Description: Solid state lithium ion electrolytes are important to the development of next generation safer and high power density lithium ion batteries. Perovskite-structured LLT is a promising solid electrolyte with high lithium ion conductivity. LLT also serves as a good model system to understand lithium ion diffusion behaviors in solids. In this thesis, molecular dynamics and related atomistic computer simulations were used to study the diffusion behavior and diffusion mechanism in bulk crystal and grain boundary in lithium lanthanum titanate (LLT) solid state electrolytes. The effects of defect concentration on the structure and lithium ion diffusion behaviors in LLT were systematically studied and the lithium ion self-diffusion and diffusion energy barrier were investigated by both dynamic simulations and static calculations using the nudged elastic band (NEB) method. The simulation results show that there exist an optimal vacancy concentration at around x=0.067 at which lithium ions have the highest diffusion coefficient and the lowest diffusion energy barrier. The lowest energy barrier from dynamics simulations was found to be around 0.22 eV, which compared favorably with 0.19 eV from static NEB calculations. It was also found that lithium ions diffuse through bottleneck structures made of oxygen ions, which expand in dimension by 8-10% when lithium ions pass through. By designing perovskite structures with large bottleneck sizes can lead to materials with higher lithium ion conductivities. The structure and diffusion behavior of lithium silicate glasses and their interfaces, due to their importance as a grain boundary phase, with LLT crystals were also investigated by using molecular dynamics simulations. The short and medium range structures of the lithium silicate glasses were characterized and the ceramic/glass interface models were obtained using MD simulations. Lithium ion diffusion behaviors in the glass and across the glass/ceramic interfaces were investigated. It was found that there existed a minor segregation ...
Date: August 2014
Creator: Chen, Chao-Hsu
Partner: UNT Libraries

Precipitation and Pattern Formation under Far-From-Equilibrium Conditions

Description: Precipitates of a series of alkaline earth metal (barium and strontium) carbonates, chromates, phosphates, and sulfates were formed at high supersaturation by diffusion through silica hydrogel, agarose hydrogel, and the freshly developed agarosesilica mixed gels. The reaction vessels could be a small test tube, a recently designed standard micro slide cassette and a enlarged supercassette. Homogeneous nucleation is thought to have taken place, and particle development led to the formation of an unusual category of materials, known as Induced Morphology Crystal Aggregates [IMCA], at high pH under far-from-equilibrium conditions. Standard procedures were developed in order to produce homogeneous gels. Particle development led to characteristic style of pattern formation, which I have called monster, spiral, and flake. Among these IMCA, barium carbonate, chromate, and sulfate were moderately easy to grow. Barium phosphate was very difficult to grow as IMCA due to formation of poorly crystalline spherulites. IMCA of strontium carbonate, chromate and sulfate could be developed at high basic pH in the presence of silicate. Strontium carbonate sheet morphology displays a unique property, double internal layer structure, which was identified by backscattering electron imaging (BEI). Selected electron diffraction (SAD) revealed a new crystal phase which was called "Dentonite". Precipitate particles were isolated using a non-destructive isolation technique. Optical microscopy was widely used to examine particles in situ and scanning electron microscopy and X-ray dispersive energy (EDX) spectroscopy were applied to particles ex situ, together with ESCA for surface analysis. Growth patterns were found to be strongly dependent on pH. Other related pattern formation processes were also investigated including normal and dendritic structures, spherulitic structures and periodic pattern formation. Some interpretations were proposed in terms of mechanism. Chemical additive effects were examined experimentally in the calcium phosphate system. The effect of external ionic strength was investigated, and it was found that a ...
Date: August 1995
Creator: Chen, Peng, 1960-
Partner: UNT Libraries

The Physics of Gaseous Exposures on Active Field Emission Microcathode Arrays

Description: The interaction of active molybdenum field emission microcathode arrays with oxygen, water, carbon dioxide, methane, hydrogen and helium gases was studied. Experiments were setup to measure the emission characteristics as a function of gas exposures. The resulting changes in the surface work function of the tips were determined from the Fowler-Nordheim plots. The kinetics of the FEA-gas interaction were studied by observing the ion species originating from the array during and after gas exposures with a high resolution quadrupole mass spectrometer. With the work function data and the mass spectrometry information, the mechanisms responsible for emission degradation and subsequent device recovery after exposures have been determined. The data obtained was used in estimating the device lifetimes under various vacuum environments. Also it was found that the gas exposure effects are similar in dc and pulsed modes of operation of the arrays, thus permitting the use of dc mode testing as an effective acceleration method in establishing the device lifetimes under various vacuum conditions. The vacuum conditions required for the long term emission current stability and reliability of vacuum microelectronic devices employing FEAs are established. Exposure of Mo field emitter arrays to oxygen bearing species like oxygen, water and carbon dioxide resulted in serious emission current degradation. Whereas, exposure to methane and hydrogen caused a significant increase in emission current. The control of residual gases like 02, C02 and H20 in the vacuum envelope is essential for the emission current stability and long term reliability of vacuum microelectronic devices employing field emission microcathode technology.
Date: September 1996
Creator: Chalamala, Babu Reddy
Partner: UNT Libraries

Processing and Characterization of Polycarbonate Foams with Supercritical Co2 and 5-Phenyl-1H-tetrazole

Description: Since their discovery in the 1930s, polymeric foams have been widely used in the industry for a variety of applications such as acoustical and thermal insulation, filters, absorbents etc. The reason for this ascending trend can be attributed to factors such as cost, ease of processing and a high strength to weight ratio compared to non-foamed polymers. The purpose of this project was to develop an “indestructible” material made of polycarbonate (PC) for industrial applications. Due to the high price of polycarbonate, two foaming methods were investigated to reduce the amount of material used. Samples were foamed physically in supercritical CO2 or chemically with 5-phenyl-1H-tetrazole. After thermal characterization of the foams in differential scanning calorimetry (DSC), we saw that none of the foaming methods had an influence on the glass transition of polycarbonate. Micrographs taken in scanning electron microscopy (SEM) showed that foams obtained in physical and chemical foaming had different structures. Indeed, samples foamed in supercritical CO2 exhibited a microcellular opened-cell structure with a high cell density and a homogeneous cell distribution. On the other hand, samples foamed with 5-phenyl-1H-tetrazole had a macrocellular closed-cell structure with a much smaller cell density and a random cell distribution. Compression testing showed that polycarbonate foamed physically had a compression modulus a lot greater. Then, XLPE mesh 35 or 50 and wollastonite were added to the polymeric matrices to enhance the foaming process and the mechanical properties. DSC experiments showed that the addition of fillers changed the thermal properties of polycarbonate for both foaming methods by inducing a shift in glass transition. SEM revealed that fillers lowered the average cell diameter and increased the cell density. This phenomenon increased the compression modulus for polycarbonate foamed in supercritical CO2. However, mechanical properties decreased for samples foamed with 5-phenyl-1H-tetrazole due to their relative brittleness and ...
Date: May 2015
Creator: Cloarec, Thomas
Partner: UNT Libraries

Surface Topography and Aesthetics of Recycled Cross-Linked Polyethylene Wire and Cable Coatings

Description: Our research focuses on re-using a waste a material, cross-linked polyethylene abbreviated XLPE, which is a widely used coating for wires. XLPE is strong and has excellent thermal properties due to its chemical structure - what leads to the significance of recycling this valuable polymer. Properties of XLPE include good resistance to heat, resistance to chemical corrosion, and high impact strength. A wire is usually composed of a metal core conductor and polymeric coating layers. One creates a new coating, including little pieces of recycled XLPE in the lower layer adjacent to the wire, and virgin XLPE only in the upper layer. Industries are often wasting materials which might be useful. Mostly, some returned or excess products could be recycled to create a new type of product or enable the original use. This method helps cleaning the waste, lowers the costs, and enhances the income of the manufacturing company. With the changing of the thickness of the outer layer, the roughness changes significantly. Moreover, different processing methods result in surfaces that look differently.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2014
Creator: Xie, Wa
Partner: UNT Libraries

Nanohybrids Based on Solid and Foam Polyurethanes

Description: Polymer nanocomposites are a going part of Materials Science and Engineering. These new composite materials exhibit dimensional and thermal stability of inorganic materials and toughness and dielectric properties of polymers. Development of nanocomposites become an important approach to create high-performance composite materials. In this study silica, fly ash, silica nanotubes and carbon black particles have been added to modify polyurethane foam and thermoplastic polyurethanes. It has been found that the addition of silica can diminish the size of foam bubbles, resulting in an increased stiffness of the material, increase of the compressive strength, and greater resistance to deformation. However, the uniformity of bubbles is reduced, resulting in increased friction of the material. Fly ash added to the foam can make bubbles smaller and improve uniformity of cells. Therefore, the material stiffness and compressive strength, resistance to deformation, and has little impact on the dynamic friction of the material. Adding nanotubes make bubble size unequal, and the arrangement of the bubble uneven, resulting in decreased strength of the material, while the friction increases. After the addition of carbon black to the polyurethane foam, due to the special surface structure of the carbon black, the foam generates more bubbles during the foaming process changing the foam structure. Therefore, the material becomes soft, we obtain a flexible polyurethane foam. The results of mechanical properties determination of the thermoplastic polyurethane that adding particles may increase the stiffness and wear resistance of the thermoplastic polyurethane, while the tensile properties of the material are reduced. This phenomenon may be due to agglomeration of particles during the mixing process. Possibly the particles cannot be uniformly dispersed in the thermoplastic polyurethane.
Date: May 2015
Creator: Bo, Chong
Partner: UNT Libraries

Silver Tantalate: a High Temperature Tribological Investigation

Description: As technology advances, mechanical and electrical systems are subjugated to intense temperature fluctuations through their service life. Designing coatings that operate in extreme temperatures is, therefore, a continuing challenge within the tribology community. Silver tantalate was chosen for investigation at the atomic level, the physical and chemical properties that influence the thermal, mechanical, and tribological behavior for moving assemblies in high temperature tribological applications. By correlating behavior of internal physical processes to the macro tribological behavior, the tribological community will potentially gain improved predicative performance of solid lubricants in future investigations. Three different approaches were explored for the creation of such materials on Inconel substrates: (1) powders produced using a solid state which were burnished on the surface; (2) monolithic silver tantalate thin films deposited by magnetron sputtering; and, (3) an adaptive tantalum nitride/silver nanocomposite sputter-deposited coating that forms a lubricious silver tantalate oxide on its surface when operated at elevated temperatures. Dry sliding wear tests of the coatings against Si3N4 counterfaces revealed friction coefficients in the 0.06 - 0.15 range at T ~ 750 °C. Reduced friction coefficients were found in nanocomposite materials that contained primarily a AgTaO3 phase with a small amount of segregated Ag phase, as suggested by structural characterization using X-ray diffraction. The presence of nanoparticles of segregated Ag in the thin films further enhanced the performance of these materials by increasing their toughness. Additional characterization of the AgTaO3 films at 750 °C under normal loads of 1, 2, 5, or 10 N revealed that the friction monotonically increased as the load was increased. These results were complemented by molecular dynamics simulations, which confirmed the increase of friction with load. Further, the simulations support the hypothesis that this trend can be explained in terms of decreased presence of Ag clusters near the sliding surface and the ...
Date: December 2014
Creator: Stone, D’Arcy S.
Partner: UNT Libraries

Structural, Thermal and Acoustic Performance of Polyurethane Foams for Green Buildings

Description: Decreasing the carbon footprint through use of renewable materials has environmental and societal impact. Foams are a valuable constituent in buildings by themselves or as a core in sandwich composites. Kenaf is a Southeast USA plant that provides renewable filler. The core of the kenaf is porous with a cell size in a 5-10 micrometer range. The use of kenaf core in foams represents a novel multiscalar cellular structural composite. Rigid polyurethane foams were made using free foaming expansion with kenaf core as filler with loadings of 5, 10 and 15 %. Free foaming was found to negatively affect the mechanical properties. An innovative process was developed to introduce a constraint to expansion during foaming. Two expansion ratios were examined: 40 and 60 % (decreasing expansion ratio). MicroCT and SEM analysis showed a varying structure of open and closed cell pores. The mechanical, thermal insulation, acoustic properties were measured. Pure PU foam showed improved cell size uniformity. Introducing kenaf core resulted in decreasing the PU performance in the free expansion case. This was reversed by introducing constraints. To understand the combined impact of having a mixed close cell and open cell architecture, finite element modeling was done using ANSYS. Models were created with varying percentages of open, closed, and bulk cells to encompass entire range of foam porosities. Net zero energy building information modelling was conducted using EnergyPlus was conducted using natural fiber composite skins. Environmental impacts for instance global warming potential, acidification, eutrophication, fossil fuel consumption, ozone depletion, and smog potential of the materials used in construction was studied using life cycle assessment. The results showed improvement on energy consumption and carbon footprint.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2014
Creator: Nar, Mangesh
Partner: UNT Libraries

Analysis of Thermoplastic Polyimide + Polymer Liquid Crystal Blends

Description: Thermoplastic polyimides (TPIs) exhibit high glass transition temperatures (Tgs), which make them useful in high performance applications. Amorphous and semicrystalline TPIs show sub-Tg relaxations, which can aid in improving strength characteristics through energy absorption. The a relaxation of both types of TPIs indicates a cooperative nature. The semicrystalline TPI shows thermo-irreversible cold crystallization phenomenon. The polymer liquid crystal (PLC) used in the blends is thermotropic and with longitudinal molecular structure. The small heat capacity change (ACP) associated with the glass transition indicates the PLC to be rigid rod in nature. The PLC shows a small endotherm associated with the melting. The addition of PLC to the semicrystalline TPI does not significantly affect the Tg or the melting point (Tm). The cold crystallization temperature (Tc) increases with the addition of the PLC, indicating channeling phenomenon. The addition of PLC also causes a negative deviation of the ACP, which is another evidence for channeling. The TPI, PLC and their blends show high thermal stability. The semicrystalline TPI absorbs moisture; this effect decreases with the addition of the PLC. The absorbed moisture does not show any effect on the degradation. The addition of PLC beyond 30 wt.% does not result in an improvement of properties. The amorphous TPI + PLC blends also show the negative deviation of ACP from linearity with composition. The addition of PLC causes a decrease in the thermal conductivity in the transverse direction to the PLC orientation. The thermomechanical analysis indicates isotropic expansivity for the amorphous TPI and a small anisotropy for the semicrystalline TPI. The PLC shows large anisotropy in expansivity. Even 5 wt. % concentration of PLC in the blend induces considerable anisotropy in the expansivity. Thus, blends show controllable expansivity through PLC concentration. Amorphous TPI + PLC blends also show excellent film formability. The amorphous TPI ...
Date: May 1998
Creator: Gopalanarayanan, Bhaskar
Partner: UNT Libraries

Combined Electrochemistry and Spectroscopy of Complexes and Supramolecules containing Bipyridyl and Other Azabiphenyl Building Blocks

Description: A group of azabiphenyl complexes and supramolecules, and their reduced and oxidized forms when possible, were characterized by cyclic voltammetry and electronic absorption spectroscopy. The oxidized and reduced species, if sufficiently stable, were further generated electrochemically inside a specially designed quartz cell with optically transparent electrode, so that the spectra of the electrochemically generated species could be taken in situ. Assignments were proposed for both parent and product electronic spectra. Species investigated included a range of Ru(II) and Pt(II) complexes, as well as catenanes and their comparents. Using the localized electronic model, the electrochemical reduction can be in most cases assigned as azabiphenyl-based, and the oxidation as transition metal-based. This is consistent with the fact that the azabiphenyl compounds have a low lying π* orbital. The electronic absorption spectra of the compounds under study are mainly composed of π —> π* bands with, in some cases, charge transfer bands also.
Date: August 1995
Creator: Yang, Lei
Partner: UNT Libraries

Thermophysical and Mechanical Properties of Polymer Liquid Crystals and Their Blends

Description: Tensile properties, namely the elastic modulus, tensile strength, percent of elongation at yield and at the break were determined for the pure components and blends. The results are connected to the respective phase diagrams and demonstrate that blending makes property manipulation possible. Blends for which the mechanical properties are better than those of pure EPs can be obtained.
Date: May 1994
Creator: López, Betty Lucy
Partner: UNT Libraries

Computer Simulations of Dilute Polymer Solutions: Chain Overlaps and Entanglements

Description: Chain conformations and the presence of chain overlaps and entanglements in dilute polymer solutions have been analyzed. The fundamental problem of existence of chain overlaps in dilute solutions is related to the drag reduction phenomenon (DR). Even though DR occurs in solutions with the concentration of only few parts per million (ppm), some theories suggest that entanglements may play an important role in DR mechanism. Brownian dynamics technique have been used to perform simulations of dilute polymer solutions at rest and under shear flow. A measure of interchain contacts and two different measures of entanglements have been devised to evaluate the structure of polymer chains in solution. Simulation results have shown that overlaps and entanglements do exist in static dilute solutions as well as in solutions under shear flow. The effect of solution concentration, shear rate and molecular mass have been examined. In agreement with the solvation theory of DR mechanism, simulation results have demonstrated the importance of polymer + polymer interactions in dilute solutions.
Date: August 1996
Creator: Drewniak, Marta
Partner: UNT Libraries

Studies of Classically Chaotic Quantum Systems within the Pseudo-Probablilty Formalism

Description: The evolution of classically chaotic quantum systems is analyzed within the formalism of Quantum Pseudo-Probability Distributions. Due to the deep connections that a quantum system shows with its classical correspondent in this representation, the Pseudo-Probability formalism appears to be a useful method of investigation in the field of "Quantum Chaos." In the first part of the thesis we generalize this formalism to quantum systems containing spin operators. It is shown that a classical-like equation of motion for the pseudo-probability distribution ρw can be constructed, dρw/dt = (L_CL + L_QGD)ρw, which is rigorously equivalent to the quantum von Neumann-Liouville equation. The operator L_CL is undistinguishable from the classical operator that generates the semiclassical equations of motion. In the case of the spin-boson system this operator produces semiclassical chaos and is responsible for quantum irreversibility and the fast growth of quantum uncertainty. Carrying out explicit calculations for a spin-boson Hamiltonian the joint action of L_CL and L_QGD is illustrated. It is shown that the latter operator, L_QGD makes the spin system 'remember' its quantum nature, and competes with the irreversibility induced by the former operator. In the second part we test the idea of the enhancement of the quantum uncertainty triggered by the classical chaos by investigating the analogous effect of diffusive excitation in periodically kicked quantum systems. The classical correspondents of these quantum systems exhibit, in the chaotic region, diffusive behavior of the unperturbed energy. For the Quantum Kicked Harmonic Oscillator, in the case of quantum resonances, we provide an exact solution of the quantum evolution. This proves the existence of a deterministic drift in the energy increase over time of the system considered. More generally, this "superdiffusive" excitation of the energy is due to coherent quantum mechanical tunnelling between degenerate tori of the classical phase space. In conclusion we find ...
Date: August 1992
Creator: Roncaglia, Roberto
Partner: UNT Libraries

Scaling Behaviors and Mechanical Properties of Polymer Gels

Description: Polymer gels undergo a volume phase transition in solvent in response to an infinitesimal environmental change. This remarkable phenomenon has resulted in many potential applications of polymer gels. The understanding of its mechanical properties has both scientific and technological importance. For this purpose, we have developed a novel method for measuring Poisson's ratio, which is one of the most important parameters determining the mechanical property of gels. Using this method, Poisson's ratio in N-isopropyacrylamide (NIPA) and polyacrylamide (PAAM) gels has been studied.
Date: May 1994
Creator: Li, Chʻun-fang
Partner: UNT Libraries