6 Matching Results

Search Results

Advanced search parameters have been applied.

Development of a precision wire feeder for small-diameter wire

Description: At Sandia National Laboratories in Albuquerque, the author designed and fabricated a precision wire feeder to be used with high energy density (electron beam and laser beam) welding for weld joints where filler wire might be needed to fill a gap or to adjust the chemical composition so that a crack-free weld could be made. The wire feeder incorporates a 25,000 step-per-revolution motor to power a urethane-coated drive roll. A microprocessor-based controller provides precise control of the motor and allows both continuous and pulsed feeding of the wire. A unidirectional 0.75-in.-dia ball bearing is used to press the wire against the drive roll. A slight constant backward tension is maintained on the wire spool by a Bodine torque motor. A Teflon tube is used to guide the wire from the drive roll to the vicinity of the weld, where a hypodermic needle is used to aim the wire into the weld pool. The operation of the wire feeder was demonstrated by feeding a 10-mil-dia, Type 304 stainless steel wire into a variety of CO{sub 2} laser beam welds. The resulting welds are smooth and continuous, and the welds are considered to be completely satisfactory for a variety of applications.
Date: March 1, 1995
Creator: Brandon, E.D.
Partner: UNT Libraries Government Documents Department

Precision wire feeder for small diameter wire

Description: This invention is comprised of a device for feeding small diameter wire having a diameter less than .04 mm (16 mil) to a welding station which includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 fig.
Date: December 31, 1990
Creator: Brandon, E. D.; Hooper, F. M. & Reichenbach, M. L.
Partner: UNT Libraries Government Documents Department