2 Matching Results

Search Results

Advanced search parameters have been applied.

On the Computation of Integral Curves in Adaptive Mesh Refinement Vector Fields

Description: Integral curves, such as streamlines, streaklines, pathlines, and timelines, are an essential tool in the analysis of vector field structures, offering straightforward and intuitive interpretation of visualization results. While such curves have a long-standing tradition in vector field visualization, their application to Adaptive Mesh Refinement (AMR) simulation results poses unique problems. AMR is a highly effective discretization method for a variety of physical simulation problems and has recently been applied to the study of vector fields in flow and magnetohydrodynamic applications. The cell-centered nature of AMR data and discontinuities in the vector field representation arising from AMR level boundaries complicate the application of numerical integration methods to compute integral curves. In this paper, we propose a novel approach to alleviate these problems and show its application to streamline visualization in an AMR model of the magnetic field of the solar system as well as to a simulation of two incompressible viscous vortex rings merging.
Date: June 27, 2011
Creator: Deines, Eduard; Weber, Gunther H.; Garth, Christoph; Van Straalen, Brian; Borovikov, Sergey; Martin, Daniel F. et al.
Partner: UNT Libraries Government Documents Department

Recent Advances in VisIt: AMR Streamlines and Query-Driven Visualization

Description: Adaptive Mesh Refinement (AMR) is a highly effective method for simulations spanning a large range of spatiotemporal scales such as those encountered in astrophysical simulations. Combining research in novel AMR visualization algorithms and basic infrastructure work, the Department of Energy's (DOEs) Science Discovery through Advanced Computing (SciDAC) Visualization and Analytics Center for Enabling Technologies (VACET) has extended VisIt, an open source visualization tool that can handle AMR data without converting it to alternate representations. This paper focuses on two recent advances in the development of VisIt. First, we have developed streamline computation methods that properly handle multi-domain data sets and utilize effectively multiple processors on parallel machines. Furthermore, we are working on streamline calculation methods that consider an AMR hierarchy and detect transitions from a lower resolution patch into a finer patch and improve interpolation at level boundaries. Second, we focus on visualization of large-scale particle data sets. By integrating the DOE Scientific Data Management (SDM) Center's FastBit indexing technology into VisIt, we are able to reduce particle counts effectively by thresholding and by loading only those particles from disk that satisfy the thresholding criteria. Furthermore, using FastBit it becomes possible to compute parallel coordinate views efficiently, thus facilitating interactive data exploration of massive particle data sets.
Date: November 12, 2009
Creator: Weber, Gunther; Ahern, Sean; Bethel, Wes; Borovikov, Sergey; Childs, Hank; Deines, Eduard et al.
Partner: UNT Libraries Government Documents Department