16 Matching Results

Search Results

Advanced search parameters have been applied.

Cost effectiveness of sonic drilling

Description: Sonic drilling (combination of mechanical vibrations and rotary power) is an innovative environmental technology being developed in cooperation with DOE`s Arid-Site Volatile Organic Compounds Integrated Demonstration at Hanford and the Mixed Waste Landfill Integrated Demonstration at Sandia. This report studies the cost effectiveness of sonic drilling compared with cable-tool and mud rotary drilling. Benefit of sonic drilling is its ability to drill in all types of formations without introducing a circulating medium, thus producing little secondary waste at hazardous sites. Progress has been made in addressing the early problems of failures and downtime.
Date: March 1, 1996
Creator: Masten, D. & Booth, S.R.
Partner: UNT Libraries Government Documents Department

Remediation of uranium-contaminated soil using the Segmented Gate System and containerized vat leaching techniques: a cost effectiveness study

Description: Because it is difficult to characterize heterogeneously contaminated soils in detail and to excavate such soils precisely using heavy equipment, it is common for large quantities of uncontaminated soil to be removed during excavation of contaminated sites. Until now, volume reduction of radioactively contaminated soil depended upon manual screening and analysis of samples, a costly and impractical approach, particularly with large volumes of heterogeneously contaminated soil. The baseline approach for the remediation of soils containing radioactive waste is excavation, pretreatment, containerization, and disposal at a federally permitted landfill. However, disposal of low-level radioactive waste is expensive and storage capacity is limited. ThermoNuclean`s Segmented Gate System (SGS) removes only the radioactively contaminated soil, in turn greatly reducing the volume of soils that requires disposal. After processing using the SGS, the fraction of contaminated soil is processed using the containerized vat leaching (CVL) system developed at LANL. Uranium is leached out of the soil in solution. The uranium is recovered with an ion exchange resin, leaving only a small volume of liquid low-level waste requiring disposal. The reclaimed soil can be returned to its original location after treatment with CVL.
Date: September 1, 1996
Creator: Cummings, M. & Booth, S.R.
Partner: UNT Libraries Government Documents Department

Cost studies of thermally enhanced in situ soil remediation technologies

Description: This report describes five thermally enhanced technologies that may be used to remediate contaminated soil and water resources. The standard methods of treating these contaminated areas are Soil Vapor Extraction (SVE), Excavate & Treat (E&T), and Pump & Treat (P&T). Depending on the conditions at a given site, one or more of these conventional alternatives may be employed; however, several new thermally enhanced technologies for soil decontamination are emerging. These technologies are still in demonstration programs which generally are showing great success at achieving the expected remediation results. The cost savings reported in this work assume that the technologies will ultimately perform as anticipated by their developers in a normal environmental restoration work environment. The five technologies analyzed in this report are Low Frequency Heating (LF or Ohmic, both 3 and 6 phase AC), Dynamic Underground Stripping (DUS), Radio Frequency Heating (RF), Radio Frequency Heating using Dipole Antennae (RFD), and Thermally Enhanced Vapor Extraction System (TEVES). In all of these technologies the introduction of heat to the formation raises vapor pressures accelerating contaminant evaporation rates and increases soil permeability raising diffusion rates of contaminants. The physical process enhancements resulting from temperature elevations permit a greater percentage of volatile organic compound (VOC) or semi- volatile organic compound (SVOC) contaminants to be driven out of the soils for treatment or capture in a much shorter time period. This report presents the results of cost-comparative studies between these new thermally enhanced technologies and the conventional technologies, as applied to five specific scenarios.
Date: May 1996
Creator: Bremser, J. & Booth, S. R.
Partner: UNT Libraries Government Documents Department

Cost effectiveness studies of environmental technologies: Volume 1

Description: This paper examines cost effectiveness studies of environmental technologies including the following: (1) In Situ Air Stripping, (2) Surface Towed Ordinance Locator System, (3) Ditch Witch Horizontal Boring Technology, (4) Direct Sampling Ion Trap Mass Spectrometer, (5) In Situ Vitrification, (6) Site Characterization and Analysis Penetrometer System, (7) In Situ Bioremediation, and (8) SEAMIST Membrane System Technology.
Date: February 1, 1994
Creator: Silva, E.M. & Booth, S.R.
Partner: UNT Libraries Government Documents Department

The energy situation in five Central American countries

Description: This study describes the energy resources and the changes that have taken place in energy supply and demand in five Central American countries between 1970 and 1984. Economic changes are also reviewed because they influence and are affected by changes in the energy sector. The work was performed under the auspices of the US Agency for International Development. The Central American countries of Costa Rica, El Salvador, Guatemala, Honduras, and Panama are highly dependent on fuel wood as a source of energy, particularly in the residential sector. They also rely upon imported oil products to supply a growing modern sector. Most countries have significant hydroelectric and geothermal resources, and most countries produce a large portion of their electricity from hydroelectric projects. Demand for electricity has grown rapidly. Relative shares of primary versus secondary energy in the five countries vary significantly and strongly correlate with average per capita income. Consumption of secondary energy has declined during the recent economic recession suffered by the region.
Date: June 1, 1987
Creator: Trocki, L.; Booth, S.R. & Umana Q, A.
Partner: UNT Libraries Government Documents Department

Using Revolving Loan Funds to Finance Energy Savings Performance Contracts in State and Local Agency Applications (Revised)

Description: This document is meant to assist state and local decision makers in understanding how the financing of energy savings performance contract projects can effectively fit into the structure of a revolving loan fund.
Date: July 1, 2011
Creator: Booth, S.; Doris, E.; Knutson, D. & Regenthal, S.
Partner: UNT Libraries Government Documents Department

Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations

Description: The U.S. Department of Defense (DoD) is the largest energy consumer in the U.S. government. Present energy use impacts DoD global operations by constraining freedom of action and self-sufficiency, demanding enormous economic resources, and putting many lives at risk in logistics support for deployed environments. There are many opportunities for DoD to more effectively meet energy requirements through a combination of human actions, energy efficiency technologies, and renewable energy resources. In 2008, a joint initiative was formed between DoD and the U.S. Department of Energy (DOE) to address military energy use. This initiative created a task force comprised of representatives from each branch of the military, the Office of the Secretary of Defense (OSD), the Federal Energy Management Program (FEMP), and the National Renewable Energy Laboratory (NREL) to examine the potential for ultra high efficiency military installations. This report presents an assessment of Marine Corps Air Station (MCAS) Miramar, selected by the task force as the initial prototype installation based on its strong history of energy advocacy and extensive track record of successful energy projects.
Date: December 1, 2010
Creator: Booth, S.; Barnett, J.; Burman, K.; Hambrick, J.; Helwig, M. & Westby, R.
Partner: UNT Libraries Government Documents Department

Net Zero Energy Military Installations: A Guide to Assessment and Planning

Description: The U.S. Department of Defense (DoD) recognizes the strategic importance of energy to its mission, and is working to reduce energy consumption and enhance energy self-sufficiency by drawing on local clean energy sources. A joint initiative formed between DoD and the U.S. Department of Energy (DOE) in 2008 to address military energy use led to a task force to examine the potential for net zero energy military installations, which would produce as much energy on site as they consume in buildings, facilities, and fleet vehicles. This report presents an assessment and planning process to examine military installations for net zero energy potential. Net Zero Energy Installation Assessment (NZEIA) presents a systematic framework to analyze energy projects at installations while balancing other site priorities such as mission, cost, and security.
Date: August 1, 2010
Creator: Booth, S.; Barnett, J.; Burman, K.; Hambrick, J. & Westby, R.
Partner: UNT Libraries Government Documents Department

Cost effectiveness of silent discharge plasma for point-of-use VOC emissions control in semiconductor fabrication

Description: Extensive research into the treatment and control of Volatile Organic Compounds (VOCs) from semiconductor industry manufacturing processes has identified the need for alternatives to existing combustion devices. Specifically, semiconductor manufacturing design is moving toward the application of effective, small-scale, abatement control technologies for specific point-of-use (POU) waste streams associated with a particular component or manufacturing tool. The consortium of companies involved in semiconductor precompetitive research and development known collectively as SEMATECH recently evaluated eleven emerging environmental technologies designed to treat POU process emissions of VOCs specific to the semiconductor industry. After rigorous technical review only one technology, the Silent Discharge Plasma (SDP) developed at Low Alamos National Laboratory, was considered to successfully meet the required technical performance standards and potential cost effectiveness necessary for continued consideration by SEMATECH in their point-of-use emissions control plans.
Date: December 11, 1996
Creator: Cummings, M. & Booth, S.R.
Partner: UNT Libraries Government Documents Department

In situ bioremediation: Cost effectiveness of a remediation technology field tested at the Savannah River

Description: In Situ Bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the SRID is the volatile organic compound (VOC), tricloroetylene(TCE). A 384 day test run at Savannah River, sponsored by the US Department of Energy, Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In Situ Bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biolgoical process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted air stream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given this data, the cost effectiveness of this new technology can be evaluated.
Date: March 1995
Creator: Saaty, R. P.; Showalter, W. E. & Booth, S. R.
Partner: UNT Libraries Government Documents Department

Expedited site characterization

Description: Expedited Site Characterization (ESC) is being offered as a new, more cost-effective way to perform DOE environmental site characterizations. Site characterization of environmental cleanup sites can be costly and time consuming. {open_quotes}Traditional techniques,{close_quotes} though effective, are the outgrowth of cautious and often restrictive regulatory control. At some sites up to 40% of the funds and 70% of the time spent on cleanup operations have been devoted to characterization. More realistically, the DOE`s Ten Year Plan (TYP) Cost Rollup by Category (high budgetary version) budgets $1.34 billion to remedial action assessments out of a total of $9.7 billion in remedial actions - about 14% of the total TYP expenditures for this type of cleanup work. The expenditure percentage for characterization drops to a much lower 3% of total expenditures during outyears, after 2006, as most of the assessments will have been completed during the early TYP years. (The sampling and monitoring costs, however, rise from 7% of the budget during the TYP to 30% during the outyears as this activity continues and others decline. Improved characterizations could have the potential to reduce the need for some of these ongoing monitoring costs.) Fortunately, regulatory agencies have begun to relax many of the constraints on site characterization allowing more efficient and innovative approaches to be applied. Argonne National Laboratory`s Expedited Site Characterization is perhaps the best defined of these new approaches. ESC is founded on the premise that it is cheaper, faster, and more efficient to develop and test a conceptual model (or {open_quotes}hypothesis{close_quotes}) of contamination at a site than it is to collect data on a statistical basis and then attempt to model a site from those data. The difference between these two approaches has been described as a {open_quotes}scientific versus an engineering approach{close_quotes}.
Date: March 1, 1997
Creator: McCreary, I. & Booth, S.R.
Partner: UNT Libraries Government Documents Department

Cost effectiveness of in situ bioremediation at Savannah River

Description: In situ bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the Savannah River Integrated Demonstration is tricloroethylene (TCE) a volatile organic compound (VOC). A 384-day test run at Savannah River, sponsored by the US Department of Energy (DOE), Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In situ bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biological process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted airstream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given these data, the cost effectiveness of this new technology can be evaluated.
Date: September 1, 1995
Creator: Saaty, R.P.; Showalter, W.E. & Booth, S.R.
Partner: UNT Libraries Government Documents Department

Targeting Net Zero Energy at Marine Corps Base Hawaii, Kaneohe Bay: Preprint

Description: This paper summarizes the results of an NREL assessment of Marine Corps Base Hawaii (MCBH), Kaneohe Bay to appraise the potential of achieving net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. In 2008, the U.S. Department of Defense's U.S. Pacific Command partnered with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency at Hawaii military installations. DOE selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay, to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and hydrogen vehicle integration. This paper summarizes the results of the assessment and provides energy recommendations. The analysis shows that MCBH Kaneohe Bay has the potential to make significant progress toward becoming a net zero installation. Wind, solar photovoltaics, solar hot water, and hydrogen production were assessed, as well as energy efficiency technologies. Deploying wind turbines is the most cost-effective energy production measure. If the identified energy projects and savings measures are implemented, the base will achieve a 96% site Btu reduction and a 99% source Btu reduction. Using excess wind and solar energy to produce hydrogen for a fleet and fuel cells could significantly reduce energy use and potentially bring MCBH Kaneohe Bay to net zero. Further analysis with an environmental impact and interconnection study will need to be completed. By achieving net zero status, the base will set an example for other military installations, provide environmental benefits, reduce costs, increase energy security, and exceed its energy goals and mandates.
Date: May 1, 2012
Creator: Burman, K.; Kandt, A.; Lisell, L. & Booth, S.
Partner: UNT Libraries Government Documents Department

Targeting Net Zero Energy at Marine Corps Base Kaneohe Bay, Hawaii: Assessment and Recommendations

Description: DOD's U.S. Pacific Command has partnered with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to assess opportunities for increasing energy security through renewable energy and energy efficiency in Hawaii installations. NREL selected Marine Corps Base Hawaii (MCBH), Kaneohe Bay to receive technical support for net zero energy assessment and planning funded through the Hawaii Clean Energy Initiative (HCEI). NREL performed a comprehensive assessment to appraise the potential of MCBH Kaneohe Bay to achieve net zero energy status through energy efficiency, renewable energy, and electric vehicle integration. This report summarizes the results of the assessment and provides energy recommendations.
Date: November 1, 2011
Creator: Burman, K.; Kandt, A.; Lisell, L.; Booth, S.; Walker, A.; Roberts, J. et al.
Partner: UNT Libraries Government Documents Department

National environmental/economic infrastructure system model

Description: This is the final report for a one-year Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The ultimate goal was to develop a new methodology for macroeconomic modeling applied to national environmental and economic problems. A modeling demonstration and briefings were produced, and significant internal technical support and program interest has been generated. External contacts with DOE`s Office of Environmental Management (DOE-EM), US State Department, and the US intelligence community were established. As a result of DOE-EM interest and requests for further development, this research has been redirected to national environmental simulations as a new LDRD project.
Date: August 1, 1997
Creator: Drake, R.H.; Hardie, R.W.; Loose, V.W. & Booth, S.R.
Partner: UNT Libraries Government Documents Department