45 Matching Results

Search Results

Advanced search parameters have been applied.

Remarkable Strontium B-Site Occupancy in FerroelectricPb(Zr1-xTix)O3 Solid Solutions Doped with Cryolite-Type StrontiumNiobate

Description: New high-performance ferroelectric materials based on Pb(Zr{sub 1-x}Ti{sub x})O{sub 3} (PZT) that are doped with cryolite-type strontium niobate (SNO, Sr{sub 4}(Sr{sub 2-2y/3}Nb{sub 2+2y/3})O{sub 11+y}V{sub 0,1-y} with 0 {le} y {le} 1), hence denoted PZT:SNO, and their microscopic structure are described. The combination of exceptional piezoelectric properties, i.e. a piezoelectric strain constant of d{sub 33} {approx} 760 pm/V, with excellent stability and degradation resistance makes ferroelectric PZT:SNO solid solutions very attractive for use in novel and innovative piezoelectric actuator and transducer applications. Extended X-ray absorption fine-structure (EXAFS) analyses of PZT:SNO samples revealed that {approx}10 % of the Sr cations occupy the nominal B-sites of the perovskite-type PZT host lattice. This result was supported by EXAFS analyses of both a canonical SrTiO{sub 3} perovskite and two SNO model and reference compounds. Fit models that do not account for Sr cations on B-sites were ruled out. A clear Sr-Pb peak in Fourier transformed EXAFS data visually confirmed this structural model. The generation of temporary oxygen vacancies and the intricate defect chemistry induced by SNO-doping of PZT are crucial for the exceptional materials properties exhibited by PZT:SNO materials.
Date: April 26, 2007
Creator: Feltz, A.; Schmidt-Winkel, P.; Schossman, M.; Booth, C.H. & Albering, J.
Partner: UNT Libraries Government Documents Department

Effects of magnetization on hole localization and MnO{sub 6} octahedra disorder in hole-doped lanthanum manganese perovskites

Description: The authors review the distortions of the MnO{sub 6} octahedra reduced by magnetization in hole-doped lanthanum manganese perovskites. The systems they consider include the colossal magnetoresistance (CMR) samples La{sub 1{minus}x}Ca{sub x}MnO{sub 3} (x = 0.21, 0.25, 0.30), La{sub 0.76}Ba{sub 0.33}MnO{sub 3}, and a poorer quality La{sub 0.76}Pb{sub 0.33}MnO{sub 3} sample. They also report preliminary work on three samples of oxygen-doped LaMnO{sub 3+{delta}} and a lanthanum-deficient La{sub 0.9}MnO{sub 3} sample. They find the same exponential relationship between the removal of the distortion and the sample magnetization in the Ba- and Pb-doped CMR samples as was found previously for the Ca doped samples. The MnO{sub 6} distortion in the oxygen-doped materials is found to slightly reduce below the magnetic transition, although much less so than in the CMR samples. Above T{sub C}, the antiferromagnetic LaMnO{sub 3.006} sample shows a softer temperature dependence of the Mn-O bond length distribution broadening. Surprisingly, even this sample shows deviations from thermal (Debye) behavior near T{sub N}, possibly due to FM coupling within MnO planes.
Date: December 31, 1998
Creator: Booth, C.H.; Brosha, E.L.; Kwei, G.H.; Bridges, F. & Neumeier, J.J.
Partner: UNT Libraries Government Documents Department

Effects of localized holes on charge transport, local structure and spin dynamics in the metallic state of CMR La{sub 1{minus}x}Ca{sub x}MnO{sub 3}

Description: The authors review resistivity, x-ray-absorption fine-structure (XAFS) and muon spin relaxation ({mu}SR) data which provide clear evidence for localized holes causing polaron distortion and unusual spin dynamics below {Tc} in ``colossal magnetoresistive`` (CMR) La{sub 1{minus}x}Ca{sub x}MnO{sub 3}. Resistivity measurements for x = 0.33 under an applied field H have shown that ln[{rho}(H,T)] {infinity}-M, where M is the magnetization. The XAFS data show a similar functional dependence for the polaron distortions on M The data from these two measurements are interpreted in terms of some fraction of the available holes x remaining localized and some increasing fraction becoming delocalized with increasing M Finally, this polaron-induced spatial inhomogeneity yields anomalously slow, spatially inhomogeneous spin dynamics below {Tc}, as shown in the {mu}SR data. These experiments individually probe the charge, lattice and spin degrees of freedom in this CMR system and suggest that the polarons retain some identity even at temperatures significantly below {Tc}.
Date: March 1, 1998
Creator: Heffner, R.H.; Hundley, M.F. & Booth, C.H.
Partner: UNT Libraries Government Documents Department

Temperature-dependent x-ray diffraction study of Pd/Cu site interchange in non-Fermi liquid UCu(4)Pd

Description: A pair distribution function (PDF) analysis of temperature-dependent x-ray diffraction measurements from UCu{sub 4}Pd is presented. Fits to the displacement parameters (u{sup 2}'s) with a Debye model show better agreement with a model that includes 25% of the Pd atoms on 16$e$ (Cu) sites. In addition, significant non-thermal disorder is observed in the Cu environment, in contrast to previous measurements of local order in the U-Cu pairs.
Date: June 1, 2002
Creator: Han, S.-W.; Booth, C.H.; Bauer, E.D. & Maple, M.B.
Partner: UNT Libraries Government Documents Department

Improved self-absorption correction for extended x-ray absorption fine-structure measurements

Description: Extended x-ray absorption fine-structure (EXAFS) data collected in the fluorescence mode are susceptible to an apparent amplitude reduction due to the self-absorption of the fluorescing photon by the sample before it reaches a detector. Previous treatments have made the simplifying assumption that the effect of the EXAFS on the correction term is negligible, and that the samples are in the thick limit. We present a nearly exact treatment that can be applied for any sample thickness or concentration, and retains the EXAFS oscillations in the correction term.
Date: June 4, 2003
Creator: Booth, C.H. & Bridges, F.
Partner: UNT Libraries Government Documents Department

Local structure and vibrational properties of alpha'-Pu martensitein Ga-stabilized delta-Pu

Description: Extended x-ray absorption fine structure spectroscopy (EXAFS) is used to investigate the local atomic environment and vibrational properties of plutonium and gallium atoms in the {alpha}{prime} and {delta} phases of a mixed phase Pu-Ga alloy. EXAFS results measured at low temperature compare the structure of the mixed phase sample with a single-phase {delta}-Pu sample. EXAFS spectral components attributed to both {alpha}{prime}-Pu and {delta}-Pu were observed in the mixed phase sample. Ga K-edge EXAFS spectra indicate local atomic environments similar to the Pu LIII-edge EXAFS results, which suggests that Ga is substitutional for Pu atoms in both the monoclinic {alpha}{prime}-Pu and the fcc {delta}-Pu structures. In {delta}-Pu, we measure a Ga-Pu bond length contraction of 0.11 Angstroms with respect to the Pu-Pu bond length. The corresponding bond-length contraction around Ga in {alpha}{prime}-Pu is only 0.03 Angstroms. Results from temperature-dependent Pu LIII-edge EXAFS measurements are fit to a correlated Debye model, and a large difference in the Pu-Pu bond Debye temperature is observed for the {alpha}{prime} and {delta} phases: {theta}{sub cD}({alpha}{prime})=159{+-}13 K versus {theta}{sub cD}({delta})=120{+-}3 K. The corresponding analysis for the Ga K EXAFS determines a Ga-Pu bond Debye temperature of {theta}{sub cD}({delta})=188{+-}12 K in the {delta}-Pu phase. These results are related to the observed solubility of Ga in {delta}-Pu, the ''stabilization'' of {delta}-Pu by Ga at room temperature, and the insolubility of Ga in {alpha}{prime}-Pu.
Date: February 26, 2003
Creator: Nelson, E.J.; Blobaum, K.J.M.; Wall, M.A.; Allen, P.G.; Schwartz,A.J. & Booth, C.H.
Partner: UNT Libraries Government Documents Department

A Variation of the F-Test for Determining Statistical Relevance ofParticular Parameters in EXAFS Fits

Description: A general problem when fitting EXAFS data is determining whether particular parameters are statistically significant. The F-test is an excellent way of determining relevancy in EXAFS because it only relies on the ratio of the fit residual of two possible models, and therefore the data errors approximately cancel. Although this test is widely used in crystallography (there, it is often called a 'Hamilton test') and has been properly applied to EXAFS data in the past, it is very rarely applied in EXAFS analysis. We have implemented a variation of the F-test adapted for EXAFS data analysis in the RSXAP analysis package, and demonstrate its applicability with a few examples, including determining whether a particular scattering shell is warranted, and differentiating between two possible species or two possible structures in a given shell.
Date: July 25, 2006
Creator: Downward, L.; Booth, C.H.; Lukens, W.W. & Bridges, F.
Partner: UNT Libraries Government Documents Department

Local Structure and Vibrational Properties of alpha-Pu, alpha-U, and the alpha-U Charge Density Wave

Description: The local atomic environment and vibrational properties of atoms in monoclinic pure {alpha}-plutonium as well as orthorhombic pure {alpha}-uranium and its low-temperature charge-density-wave (CDW) modulation are examined by extended x-ray absorption fine structure spectroscopy (EXAFS). Pu L{sub III}-edge and U L{sub III}-edge EXAFS data measured at low temperatures verify the crystal structures of {alpha}-U and {alpha}-Pu samples previously determined by x-ray diffraction and neutron scattering. Debye-Waller factors from temperature-dependent EXAFS measurements are fit with a correlated Debye model. The observed Pu-Pu bond correlated Debye temperature of {theta}{sub cD}({alpha}-Pu) = 162 {+-} 5 K for the pure {alpha}-Pu phase agrees with our previous measurement of the correlated Debye temperature of the gallium-containing {alpha}'-Pu phase in a mixed phase 1.9 at% Ga-doped {alpha}'-Pu/{delta}-Pu alloy. The temperature dependence of the U-U nearest neighbor Debye-Waller factor exhibits a sharp discontinuity in slope near T{sub CDW} = 43 K, the transition temperature at which the charge-density wave (CDW) in {alpha}-U condenses from a soft phonon mode along the (100) direction. Our measurement of the CDW using EXAFS is the first observation of the structure of the CDW in polycrystalline {alpha}-U. The different temperature dependence of the Debye-Waller factor for T < T{sub CDW} can be modeled by the change in bond length distributions resulting from condensation of the charge density wave. For T > T{sub CDW}, the observed correlated Debye temperature of {theta}{sub cD}({alpha}-U) = 199 {+-} 3 K is in good agreement with other measurements of the Debye temperature for polycrystalline {alpha}-U. CDW structural models fit to the {alpha}-U EXAFS data support a squared CDW at the lowest temperatures, with a displacement amplitude of {var_epsilon} = 0.05 {+-} 0.02 {angstrom}.
Date: August 10, 2004
Creator: Nelson, E J; Allen, P G; Blobaum, K M; Wall, M A & Booth, C H
Partner: UNT Libraries Government Documents Department

Spin Equilibria in Monomeric Manganocenes: Solid State Magnetic and EXAFS Studies

Description: Magnetic susceptibility measurements and X-ray data confirm that tert-butyl-substituted manganocenes [(Me{sub 3}C){sub n}C{sub 5}H{sub 5?n}]{sub 2}Mn (n = 1, 2) follow the trend previously observed with the methylated manganocenes; that is, electron-donating groups attached to the Cp ring stabilize the low-spin (LS) electronic ground state relative to Cp{sub 2}Mn and exhibit higher spin-crossover (SCO) temperatures. However, introducing three CMe{sub 3} groups on each ring gives a temperature-invariant high-spin (HS) state manganocene. The origin of the high-spin state in [1,2,4-(Me{sub 3}C){sub 3}C{sub 5}H{sub 2}]{sub 2}Mn is due to the significant bulk of the [1,2,4-(Me{sub 3}C){sub 3}C{sub 5}H{sub 2}]{sup -} ligand, which is sufficient to generate severe inter-ring steric strain that prevents the realization of the low-spin state. Interestingly, the spin transition in [1,3-(Me{sub 3}C){sub 2}C{sub 5}H{sub 3}]{sub 2}Mn is accompanied by a phase transition resulting in a significant irreversible hysteresis ({Delta}T{sub c} = 16 K). This structural transition was also observed by extended X-ray absorption fine-structure (EXAFS) measurements. Magnetic susceptibility studies and X-ray diffraction data on SiMe{sub 3}-substituted manganocenes [(Me{sub 3}Si){sub n}C{sub 5}H{sub 5-n}]{sub 2}Mn (n = 1, 2, 3) show high-spin configurations in these cases. Although tetra- and hexasubstituted manganocenes are high-spin at all accessible temperatures, the disubstituted manganocenes exhibit a small low-spin admixture at low temperature. In this respect it behaves similarly to [(Me{sub 3}C)(Me{sub 3}Si)C{sub 5}H{sub 3}]{sub 2}Mn, which has a constant low-spin admixture up to 90 K and then gradually converts to high-spin. Thermal spin-trapping can be observed for [(Me{sub 3}C)(Me{sub 3}Si)C{sub 5}H{sub 3}]{sub 2}Mn on rapid cooling.
Date: February 9, 2009
Creator: Walter, M. D.; Sofield, C. D.; Booth, C. H. & Andersen, R. A.
Partner: UNT Libraries Government Documents Department

Annealing, lattice disorder and non-Fermi liquid behavior in UCu4Pd

Description: The magnetic and electronic properties of non-Fermi liquid UCu{sub 4Pd} depend on annealing conditions. Local structural changes due to this annealing are reported from UL{sub III}- and Pd K-edge x-ray absorption fine-structure measurements. In particular, annealing decreases the fraction of Pd atoms on nominally Cu 16e sites and the U-Cu pair-distance distribution width. This study provides quantitative information on the amount of disorder in UCu{sub 4Pd} and allows an assessment of its possible importance to the observed non-Fermi liquid behavior.
Date: July 30, 2002
Creator: Booth, C.H.; Scheidt, E.-W.; Killer, U.; Weber, A. & Kehrein, S.
Partner: UNT Libraries Government Documents Department

Is U3Ni3Sn4 best described as near a quantum critical point?

Description: Although most known non-Fermi liquid (NFL) materials are structurally or chemically disordered, the role of this disorder remains unclear. In particular, very few systems have been discovered that may be stoichiometric and well ordered. To test whether U{sub 3}Ni{sub 3}Sn{sub 4} belongs in this latter class, we present measurements of the x-ray absorption fine structure (XAFS) of polycrystalline and single-crystal U{sub 3}Ni{sub 3}Sn{sub 4} samples that are consistent with no measurable local atomic disorder. We also present temperature-dependent specific heat data in applied magnetic fields as high as 8 T that show features that are inconsistent with the antiferromagnetic Griffiths' phase model, but do support the conclusion that a Fermi liquid/NFL crossover temperature increases with applied field. These results are inconsistent with theoretical explanations that require strong disorder effects, but do support the view that U{sub 3}Ni{sub 3}Sn{sub 4} is a stoichoiometric, ordered material that exhibits NFL behavior, and is best described as being near an antiferromagnetic quantum critical point.
Date: April 8, 2003
Creator: Booth, C. H.; Shlyk, L.; Nenkov, K.; Huber, J. G. & De Long, L. E.
Partner: UNT Libraries Government Documents Department

Electronic structure and f-orbital occupancy in Yb-substituted CeCoIn5

Description: The local structure and 4f orbital occupancy have been investigated in Ce{sub 1−x}Yb{sub x}CoIn{sub 5} via Yb L{sub III}-edge extended x-ray absorption fine structure (EXAFS), Ce and Yb L{sub III}-edge x-ray absorption near-edge structure (XANES), and angle-resolved photoemission spectroscopy (ARPES) measurements. Yb(III) (4f{sup 13}) is the hole analog of Ce(III) (4f{sup 1}). Yb is found to be strongly intermediate-valent in Ce{sub 1−x}Yb{sub x}CoIn{sub 5} throughout the entire doping range, including pure YbCoIn{sub 5}, with an f-hole occupancy for Yb of n{sub f} ≃ 0.3 (i.e. Yb{sup 2.3+}), independent of Yb concentration and independent of temperature down to T = 20 K. In contrast, the f-electron orbital occupancy for Ce remains close to 1 for all Yb concentrations, suggesting that there is no mutual influence on n{sub f} between neighboring Ce and Yb sites. Likewise, ARPES measurements at 12 K have found that the electronic structure along {Gamma} − X is not sensitive to the Yb substitution, suggesting that the Kondo hybridization of Ce f electrons with the conduction band is not affected by the presence of Yb impurities in the lattice. The emerging picture is that in Ce{sub 1−x}Yb{sub x}CoIn{sub 5} there are two networks, interlaced but independent, that couple to the conduction band: one network of Ce ions in the heavy-fermion limit, one network of Yb ions in the strongly intermediate-valent limit. The robustness of the local and electronic structure to doping suggests the absence of charge transfer between the Ce and Yb ions, and may explain the relative robustness of superconductivity for this Ce-site substitution as compared to the In-site substitution.
Date: May 3, 2011
Creator: Booth, C. H.; Durakiewicz, T.; Capan, C.; Hurt, D.; Bianchi, A. D.; Joyce, J.J. et al.
Partner: UNT Libraries Government Documents Department

Synthesis, Structure, and Physical Properties of YbNi{sub 3}Al{sub 9.23}

Description: The physical properties of YbNi{sub 3}Al{sub 9.23}, including the crystal structure, magnetization, specific heat, valence, and electrical resistivity, are reported. Single crystal X-ray diffraction reveals that the compound crystallizes with the rhombohedral space group R32 and has unit cell parameters a=7.2443(3) Å and c=27.251(3) Å with some crystallographic disorder on an Al site. The compound orders antiferromagnetically at T{sub N}=3 K despite the presence of strong ferromagnetic correlations, accompanied by a spin flop-like transition to a moment-aligned rate above 0.1 T. X-ray absorption spectroscopy and magnetic susceptibility measurements indicate a localized Yb{sup 3+} electronic configuration, while the Sommerfeld coefficient in the magnetically ordered state was determined to be approximately 135 mJ/mol-K{sup 2}, suggesting moderately heavy fermion behavior. Therefore, these data indicate a balance between competing Ruderman-Kittel-Kasuya-Yosida (RKKY) and Kondo interactions in YbNi{sub 3}Al{sub 9.23} with a somewhat dominant RKKY interaction that leads to a relatively high ordering temperature.
Date: November 4, 2010
Creator: Tobash, P. H.; Jiang, Y.; Ronning, F.; Booth, C. H.; Thompson, J. D.; Scott, B. L. et al.
Partner: UNT Libraries Government Documents Department

Pair-distribution function analysis of the structural valence transition in Cp{sub 2}{sup *}Yb(4,4'-Me{sub 2}-bipy)

Description: The Cp{sup ∗}{sub 2} Yb(L) class of compounds, where Cp{sup ∗}=pentamethylcyclopentadienyl = C{sub 5}Me{sub 5} and L is either a 1,4-diazabutadiene or bipy = 2,2′-bipyridine related ligand, have provided excellent analogies to the Kondo state on the nanoscale. Cp{sup ∗}{sub 2} Yb(4,4′-Me{sub 2}-bipy) furthers this analogy by demonstrating a valence transition as the sample is cooled below 200 K. Here, pair-distribution function (PDF) analysis of x-ray powder diffraction data demonstrate that the Cp{sup ∗}{sub 2}Yb(4,4′-Me{sub 2}-bipy) molecule is virtually unchanged through the valence transition. However, the molecule’s stacking arrangement is altered through the valence transition.
Date: July 20, 2010
Creator: Booth, C H; Bauer, E D; Bozin, E S; Billinge, S J L & Walter, M D
Partner: UNT Libraries Government Documents Department

Synthesis, structure, magnetism, and optical properties of theordered mixed-lanthanide sulfides gamma-LnLn'S3 (Ln=La, Ce; Ln'=Er, Tm,Yb)

Description: {gamma}-LnLn{prime}S{sub 3} (Ln = La, Ce; Ln{prime} = Er, Tm, Yb) have been prepared as dark red to black single crystals by the reaction of the respective lanthanides with sulfur in a Sb{sub 2}S{sub 3} flux at 1000 C. This isotypic series of compounds adopts a layered structure that consists of the smaller lanthanides (Er, Tm, and Yb) bound by sulfide in six- and seven-coordinate environments that are connected together by the larger lanthanides (La and Ce) in eight- and nine-coordinate environments. The layers can be broken down into three distinct one-dimensional substructures containing three crystallographically unique Ln{prime} centers. The first of these is constructed from one-dimensional chains of edge-sharing [Ln{prime}S{sub 7}] monocapped trigonal prisms that are joined to equivalent chains via edge-sharing to yield ribbons. There are parallel chains of [Ln{prime}S{sub 6}] distorted octahedra that are linked to the first ribbons through corner-sharing. These latter units also share corners with a one-dimensional ribbon composed of parallel chains of [Ln{prime}S{sub 6}] polyhedra that edge-share both in the direction of chain propagation and with adjacent identical chains. Magnetic susceptibility measurements show Curie-Weiss behavior from 2 to 300 K with antiferromagnetic coupling, and no evidence for magnetic ordering. The {theta}{sub p} values range from -0.4 to -37.5 K, and spin-frustration may be indicated for the Yb-containing compounds. All compounds show magnetic moments substantially reduced from those calculated for the free ions. The optical band gaps for {gamma}-LaLn{prime}S{sub 3} (Ln{prime} = Er, Tm, Yb) are approximately 1.6 eV, whereas {gamma}-CeLn{prime}S{sub 3} (Ln{prime} = Er, Tm, Yb) are approximately 1.3 eV.
Date: December 12, 2006
Creator: Jin, G.B.; Choi, E.S.; Guertin, R.P.; Brooks, J.S.; Bray, T.H.; Booth, C.H. et al.
Partner: UNT Libraries Government Documents Department

Disorder and size effects on Kondo interactions and magneticcorrelations in CePt2 nanoscrystals

Description: The evolution of the Kondo effect and magnetic correlations with size reduction in CePt{sub 2} nanoparticles (3.1-26 nm) is studied by analysis of the temperature-dependent specific heat and magnetic susceptibility. The antiferromagnetic correlations diminish with size reduction. The Kondo effect predominates at small particle size with trivalent, small Kondo temperature (T{sub K}) magnetic regions coexisting with strongly mixed valent, large T{sub K} nonmagnetic regions. We discuss the role of structural disorder, background density of states and the electronic quantum size effect on the results.
Date: December 12, 2006
Creator: Chen, Y.Y.; Huang, P.H.; Ou, M.N.; Wang, C.R.; Yao, Y.D.; Lee,T.K. et al.
Partner: UNT Libraries Government Documents Department

Ytterbium divalency and lattice disorder in near-zero thermalexpansion YbGaGe

Description: While near-zero thermal expansion (NZTE) in YbGaGe is sensitive to stoichiometry and defect concentration, the NZTE mechanism remains elusive. We present x-ray absorption spectra that show unequivocally that Yb is nearly divalent in YbGaGe and the valence does not change with temperature or with 1% B or 5% C impurities, ruling out a valence-fluctuation mechanism. Moreover, substantial changes occur in the local structure around Yb with B and C inclusion. Together with inelastic neutron scattering measurements, these data indicate a strong tendency for the lattice to disorder, providing a possible explanation for NZTE in YbGaGe.
Date: May 8, 2006
Creator: Booth, C.H.; Christianson, A.D.; Lawrence, J.M.; Pham, L.; Lashley, J. & Drymiotis, F.R.
Partner: UNT Libraries Government Documents Department

Local structure of La1-xSrxCoO3 determined from EXAFS and neutron PDF studies

Description: The combined local structure techniques, extended X-ray absorption fine struture (EXAFS) and neutron pair distribution function (PDF) analysis, have been used for temperatures 4 {<=} T {<=} 330 K to rule out a large Jahn-Teller (J-T) distortion of the Co-O bond in La{sub 1-x}Sr{sub x}CoO{sub 3} for a significant fraction of Co sites (x {<=} 0.35), indicating few, if any, J-T active, single-occupied e{sub g} Co sites exist.
Date: January 1, 2008
Creator: Proffen, Thomas; Sundaram, Nalini; Jiang, Y; Anderson, Ingrid; Belanger, D P; Booth, C H et al.
Partner: UNT Libraries Government Documents Department

Decamethylytterbocene complexes of bipyridines and diazabutadines: multiconfigurational ground states and open-shell singlet formation

Description: Partial ytterbium f-orbital occupancy (i.e. intermediate valence) and open-shell singlet Draft 12/formation are established for a variety of bipyridine and diazabutadiene adducts to decamethylytterbocene, (C{sub 5}Me{sub 5}){sub 2}Yb or Cp*{sub 2}Yb. Data used to support this claim includes ytterbium valence measurements using Yb Lm-edge x-ray absorption near-edge structure (XANES) spectroscopy, magnetic susceptibility and Complete Active Space Self-Consistent Field (CASSCF) multi configurational calculations, as well as structural measurements compared to density-functional theory (DFT) calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground state wave function that has both an open-shell singlet f{sup 13} and a closed-shell singlet f{sup 14} component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the presence of intermediate valence and its lack of any significant temperature dependence. These results have implications for understanding chemical bonding not only in organolanthanide complexes, but also for organometallic chemistry in general, as well as understanding magnetic interactions in nanopartic1es and devices.
Date: January 1, 2009
Creator: Bauer, Eric D; Booth, C H; Walter, M D; Kazhdan, D; Hu, Y - J; Lukens, Wayne et al.
Partner: UNT Libraries Government Documents Department

Studies of vibrational properties in Ga stabilized delta-Pu by extended X-ray absorption fine structure

Description: Temperature dependent extended x-ray absorption fine structure (EXAFS) spectra were measured for a 3.3 at. % Ga stabilized Pu alloy over the range T= 20 - 300 K. EXAFS data were acquired at both the Ga K-edge and the Pu L{sub III} edge. Curve-fits were performed to the first shell interactions to obtain pair-distance distribution widths, {sigma}, as a function of temperature. The temperature dependence of {sigma}(T) was accurately modeled using a correlated-Debye model for the lattice vibrational properties, suggesting Debye-like behavior in this material. Using this formalism, we obtain pair-specific correlated-Debye temperatures, {Theta}{sub cD}, of 110.7 {+-} 1.7 K and 202.6 {+-} 3.7 K, for the Pu-Pu and Ga-Pu pairs, respectively. The result for the Pu-{Theta}{sub cD} value compares well with previous vibrational studies on {delta}-Pu. In addition, our results represent the first unambiguous determination of Ga-specific vibrational properties in Pu-Ga alloys, i.e, {Theta}{sub cD} for the Ga-Pu pair. Because the Debye temperature can be related to a measure of the lattice stiffness, these results indicate the Ga-Pu bonds are significantly stronger than the Pu-Pu bonds. This effect has important implications for lattice stabilization mechanisms in these alloys.
Date: February 14, 2002
Creator: Allen, P.G.; Henderson, A.L.; Sylwester, E.R.; Turchi, P.E.A.; Shen, T.H.; Gallegos, G.F. et al.
Partner: UNT Libraries Government Documents Department

Local and average crystal structure and displacements of La{sup 11}B{sub 6} and EuB{sub 6} as a function of temperature

Description: Measurements of both the average crystal structure from Rietveld refinement of neutron powder diffraction (NPD) data and the local structure from La L{sub III}-edge x-ray-absorption fine-structure (XAFS) are presented for a La{sup 11}B{sub 6} sample as a function of temperature ({approx}10-320 K). These data are compared to XAFS results on a EuB{sub 6} sample. The single-site La and B positional distribution widths and the La-B and La-La bond length distribution widths and their temperature dependence are compared. This comparison allows an estimate of the La and B site displacements, and we find that these sublattices are only slightly correlated with each other. Moreover, while the temperature dependence of the displacement parameters of the average sites from diffraction fit an Einstein model well, the temperature dependence of the La-B bond length distribution width requires at least two vibrational frequencies, corresponding to the La and B frequencies of the individual sites. XAFS data on EuB{sub 6} indicate that the situation is the same in the Eu compound. In addition, comparisons between data taken below and above the ferromagnetic transition temperature for EuB{sub 6} place stringent limits on the lattice involvement in the associated metal-insulator transition and the ensuing large magnetoresistance effect. This lack of lattice involvement in the magnetoresistance transition is in sharp contrast to the strong lattice involvement observed in the colossal magnetoresistance lanthanum manganese perovskites.
Date: January 30, 2001
Creator: Booth, C.H.; Sarrao, J.L.; Hundley, M.F.; Cornelius, A.L.; Kwei, G.H.; Bianchi, A. et al.
Partner: UNT Libraries Government Documents Department

Local structure and vibrational properties of alpha-Pu, alpha-Uand the alpha-U charge density wave

Description: The local atomic environment and vibrational properties of atoms in monoclinic pure {alpha}-plutonium as well as orthorhombic pure a-uranium and its low-temperature charge-density-wave (CDW) modulation are examined by extended x-ray absorption fine structure spectroscopy (EXAFS). Pu L{sub III}-edge and U L{sub III}-edge EXAFS data measured at low temperatures verify the crystal structures of {alpha}-U and {alpha}-Pu samples previously determined by x-ray diffraction and neutron scattering. Debye-Waller factors from temperature-dependent EXAFS measurements are fit with a correlated Debye model. The observed Pu-Pu bond correlated Debye temperature of {theta}{sub cD}({alpha}-Pu) = 162 {+-} 5 K for the pure {alpha}-Pu phase agrees with our previous measurement of the correlated Debye temperature of the gallium-containing {alpha}{prime}-Pu phase in a mixed phase 1.9 at% Ga-doped {alpha}{prime}-Pu/{delta}-Pu alloy. The temperature dependence of the U-U nearest neighbor Debye-Waller factor exhibits a sharp discontinuity in slope near T{sub CDW} = 43 K, the transition temperature at which the charge-density wave (CDW) in {alpha}-U condenses from a soft phonon mode along the (100) direction. Our measurement of the CDW using EXAFS is the first observation of the structure of the CDW in polycrystalline {alpha}-U. The different temperature dependence of the Debye-Waller factor for T < T{sub CDW} can be modeled by the change in bond length distributions resulting from condensation of the charge density wave. For T > T{sub CDW}, the observed correlated Debye temperature of {theta}{sub cD}({alpha}-U) = 199 {+-} 3 K is in good agreement with other measurements of the Debye temperature for polycrystalline {alpha}-U. CDW structural models fit to the {alpha}-U EXAFS data support a squared CDW at the lowest temperatures, with a displacement amplitude of {var_epsilon} = 0.05 {+-} 0.02 {angstrom}.
Date: August 10, 2004
Creator: Nelson, E.J.; Allen, P.G.; Blobaum, K.J.M.; Wall, W.A. & Booth, C.H.
Partner: UNT Libraries Government Documents Department

Lattice disorder and magnetism in f-electron intermetallics

Description: Real materials can have real differences compared to ideal systems. For instance, non-Fermi liquid (NFL) behavior was initially thought to be due to chemical disorder, since the first such materials were all substituted. Although several nominally well-ordered NFL's have been discovered and extensively studied, the effect of disorder on the magnetic properties of f-electron intermetallic systems remains poorly understood. Disorder in NFL systems is reviewed from an experimental, local structure point of view, including a discussion of results on the nominally ordered U{sub 3}Ni{sub 3}Sn{sub 4} and CeCoIn{sub 5} systems, and the chemically disordered UCu{sub 4}Pd and CeRhRuSi{sub 2} systems.
Date: July 29, 2004
Creator: Booth, C.H.; Han, S.-W.; Skanthakumar, S. & Sarrao, J.L.
Partner: UNT Libraries Government Documents Department