7 Matching Results

Search Results

Advanced search parameters have been applied.

Actinic defect counting statistics over 1 cm2 area of EUVL mask blank

Description: As a continuation of comparison experiments between EUV inspection and visible inspection of defects on EUVL mask blanks, we report on the result of an experiment where the EUV defect inspection tool is used to perform at-wavelength defect counting over 1 cm{sup 2} of EUVL mask blank. Initial EUV inspection found five defects over the scanned area and the subsequent optical scattering inspection was able to detect all of the five defects. Therefore, if there are any defects that are only detectable by EUV inspection, the density is lower than the order of unity per cm2. An upgrade path to substantially increase the overall throughput of the EUV inspection system is also identified in the manuscript.
Date: February 18, 2000
Creator: Jeong, Seongtae; Lai, Chih-Wei; Rekawa, Seno; Walton, Chris W. & Bokor, Jeffrey
Partner: UNT Libraries Government Documents Department

At-wavelength interferometry of high-NA diffraction-limited EUV optics

Description: Recent advances in all-reflective diffraction-limited optical systems designed for extreme ultraviolet (EUV) lithography have pushed numerical aperture (NA) values from 0.1 to 0.3, providing Rayleigh resolutions of 27-nm. Worldwide, several high-NA EUV optics are being deployed to serve in the development of advanced lithographic techniques required for EUV lithography, including the creation and testing of new, high-resolution photoresists. One such system is installed on an undulator beamline at Lawrence Berkeley National Laboratory's Advanced Light Source. Sub{angstrom}-accuracy optical testing and alignment techniques, developed for use with the previous generations of EUV lithographic optical systems, are being extended for use at high NA. Considerations for interferometer design and use are discussed.
Date: August 1, 2003
Creator: Goldberg, Kenneth A.; Naulleau, Patrick; Rekawa, Senajith; Denham, Paul; Liddle, J. Alexander; Anderson, Erik et al.
Partner: UNT Libraries Government Documents Department

Device fabrication and transport measurements of FinFETs built with 28Si SOI wafers towards donor qubits in silicon

Description: We report fabrication of transistors in a FinFET geometry using isotopically purified silicon-28 -on-insulator (28-SOI) substrates. Donor electron spin coherence in natural silicon is limited by spectral diffusion due to the residual 29Si nuclear spin bath, making isotopically enriched nuclear spin-free 28Si substrates a promising candidate for forming spin quantum bit devices. The FinFET architecture is fully compatible with single-ion implant detection for donor-based qubits, and the donor spin-state readout through electrical detection of spin resonance. We describe device processing steps and discuss results on electrical transport measurements at 0.3 K.
Date: June 10, 2009
Creator: Lo, Cheuk Chi; Persaud, Arun; Dhuey, Scott; Olynick, Deirdre; Borondics, Ferenc; Martin, Michael C. et al.
Partner: UNT Libraries Government Documents Department

At-wavelength characterization of the extreme ultraviolet Engineering Test Stand Set-2 optic

Description: At-wavelength interferometric characterization of a new 4x-reduction lithographic-quality extreme ultraviolet (EUV) optical system is described. This state-of-the-art projection optic was fabricated for installation in the EUV lithography Engineering Test Stand (ETS) and is referred to as the ETS Set-2 optic. EUV characterization of the Set-2 optic is performed using the EUV phase-shifting point diffraction interferometer (PS/PDI) installed on an undulator beamline at Lawrence Berkeley National Laboratory's Advanced Light Source. This is the same interferometer previously used for the at-wavelength characterization and alignment of the ETS Set-1 optic. In addition to the PS/PDI-based full-field wavefront characterization, we also present wavefront measurements performed with lateral shearing interferometry, the chromatic dependence of the wavefront error, and the system-level pupil-dependent spectral-bandpass characteristics of the optic; the latter two properties are only measurable using at-wavelength interferometry.
Date: June 10, 2001
Creator: Naulleau, Patrick; Goldberg, Kenneth A.; Anderson, Erik H.; Batson, Phillip; Denham, Paul E.; Jackson, Keith H. et al.
Partner: UNT Libraries Government Documents Department

System integration and performance of the EUV engineering test stand

Description: The Engineering Test Stand (ETS) is a developmental lithography tool designed to demonstrate full-field EUV imaging and provide data for commercial-tool development. In the first phase of integration, currently in progress, the ETS is configured using a developmental projection system, while fabrication of an improved projection system proceeds in parallel. The optics in the second projection system have been fabricated to tighter specifications for improved resolution and reduced flare. The projection system is a 4-mirror, 4x-reduction, ring-field design having a numeral aperture of 0.1, which supports 70 nm resolution at a k{sub 1} of 0.52. The illuminator produces 13.4 nm radiation from a laser-produced plasma, directs the radiation onto an arc-shaped field of view, and provides an effective fill factor at the pupil plane of 0.7. The ETS is designed for full-field images in step-and-scan mode using vacuum-compatible, magnetically levitated, scanning stages. This paper describes system performance observed during the first phase of integration, including static resist images of 100 nm isolated and dense features.
Date: March 1, 2001
Creator: Tichenor, Daniel A.; Ray-Chaudhuri, Avijit K.; Replogle, William C.; Stulen, Richard H.; Kubiak, Glenn D.; Rockett, Paul D. et al.
Partner: UNT Libraries Government Documents Department