30 Matching Results

Search Results

Advanced search parameters have been applied.

A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

Description: This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, our efforts have become focused on developing an improved workbench for simulating a gasifier based Vision 21 energyplex. To provide for interoperability of models developed under Vision 21 and other DOE programs, discussions have been held with DOE and other organizations developing plant simulator tools to review the possibility of establishing a common software interface or protocol to use when developing component models. A component model that employs the CCA protocol has successfully been interfaced to our CCA enabled workbench. To investigate the software protocol issue, DOE has selected a gasifier based Vision 21 energyplex configuration for use in testing and evaluating the impacts of different software interface methods. A Memo of Understanding with the Cooperative Research Centre for Coal in Sustainable Development (CCSD) in Australia has been completed that will enable collaborative research efforts on gasification issues. Preliminary results have been obtained for a CFD model of a pilot scale, entrained flow gasifier. A paper was presented at the Vision 21 Program Review Meeting at NETL (Morgantown) that summarized our accomplishments for Year One and plans for Year Two and Year Three.
Date: January 31, 2002
Creator: Bockelie, Mike; Swensen, Dave & Denison, Martin
Partner: UNT Libraries Government Documents Department

A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

Description: This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, good progress has been made on the development of our IGCC workbench. Preliminary CFD simulations for single stage and two stage ''generic'' gasifiers using firing conditions based on the Vision 21 reference configuration have been performed. Work is continuing on implementing an advanced slagging model into the CFD based gasifier model. An investigation into published gasification kinetics has highlighted a wide variance in predicted performance due to the choice of kinetic parameters. A plan has been outlined for developing the reactor models required to simulate the heat transfer and gas clean up equipment downstream of the gasifier. Three models that utilize the CCA software protocol have been integrated into a version of the IGCC workbench. Tests of a CCA implementation of our CFD code into the workbench demonstrated that the CCA CFD module can execute on a geographically remote PC (linked via the Internet) in a manner that is transparent to the user. Software tools to create ''walk-through'' visualizations of the flow field within a gasifier have been demonstrated.
Date: April 30, 2002
Creator: Bockelie, Mike; Swensen, Dave & Denison, Martin
Partner: UNT Libraries Government Documents Department

A Virtual Engineering Framework for Simulating Advanced Power System

Description: In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering. Furthermore, with little effort the modeling capabilities described in this report can be extended to support other DOE programs, such as ultra super critical boiler development, oxy-combustion ...
Date: June 18, 2008
Creator: Bockelie, Mike; Swensen, Dave; Denison, Martin & Borodai, Stanislav
Partner: UNT Libraries Government Documents Department

A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

Description: This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No.: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, good progress has been made on the development of the IGCC workbench. A series of parametric CFD simulations for single stage and two stage generic gasifier configurations have been performed. An advanced flowing slag model has been implemented into the CFD based gasifier model. A literature review has been performed on published gasification kinetics. Reactor models have been developed and implemented into the workbench for the majority of the heat exchangers, gas clean up system and power generation system for the Vision 21 reference configuration. Modifications to the software infrastructure of the workbench have been commenced to allow interfacing to the workbench reactor models that utilize the CAPE{_}Open software interface protocol.
Date: July 28, 2002
Creator: Bockelie, Mike; Swensen, Dave; Denison, Martin; Senior, Connie; Sarofim, Adel & Risio, Bene
Partner: UNT Libraries Government Documents Department

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

Description: This is the ninth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Various subsystems of BYU's Catalyst Characterization System (CCS) were upgraded this quarter. Work on the CCS hardware and software will continue in the coming quarter. A preliminary test matrix of poisoning experiments in the CCS has been drafted that will explore the effects of at least three poisons: sodium, potassium and calcium. During this quarter, we attempted to resolve discrepancies in previous in situ measurements of catalyst sulfation. Modifications were made to the XPS analysis procedure that allowed analyses of uncrushed samples. Although the XPS and FTIR results are now more consistent in that both indicate that the surface is sulfating (unlike the results reported last quarter), they disagree with respect to which species sulfates. The CEM system for the multi-catalyst slipstream reactor arrived this quarter. Minor modifications to the reactor and control system were completed. The reactor will be shipped to AEP Rockport plant next quarter for shakedown and installation. In a parallel effort, we have proposed to make mercury oxidation measurements across the catalysts at the start of the field test. Pending approval from DOE, we will begin the mercury measurements next quarter.
Date: October 24, 2002
Creator: Bockelie, Mike; Cremer, Marc; Davis, Kevin; Senior, Connie; Hurt, Bob; Eddings, Eric et al.
Partner: UNT Libraries Government Documents Department

NO{sub x} CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

Description: This is the eleventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Poisoned catalysts were prepared and tested in the CCS. Poisoning with sodium produced a noticeable drop in activity, which was larger at higher space velocity. A computer code was written at BYU to predict conversion along a cylindrical monolithic reactor. This code may be useful for monolith samples that will be tested in the laboratory. Shakedown of the slipstream reactor was completed at AEP's Rockport plant. Ammonia was connected to the reactor. The measurement of O{sub 2} and NO{sub x} made by the CEMs corresponded to values measured by the plant at the economizer outlet. Excellent NO{sub x} reduction was observed in preliminary tests of the reactor. Some operational problems were noted and these will be addressed next quarter.
Date: April 29, 2003
Creator: Bockelie, Mike; Linjewile, Temi; Senior, Connie; Eddings, Eric & Baxter, Larry
Partner: UNT Libraries Government Documents Department

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

Description: This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. Field tests for NOx reduction in a cyclone fired utility boiler due to using Rich Reagent Injection (RRI) have been started. CFD modeling studies have been started to evaluate the use of RRI for NOx reduction in a corner fired utility boiler using pulverized coal. Field tests of a corrosion monitor to measure waterwall wastage in a utility boiler have been completed. Computational studies to evaluate a soot model within a boiler simulation program are continuing. Research to evaluate SCR catalyst performance has started. A literature survey was completed. Experiments have been outlined and two flow reactor systems have been designed and are under construction. Commercial catalyst vendors have been contacted about supplying catalyst samples. Several sets of new experiments have been performed to investigate ammonia removal processes and mechanisms for fly ash. Work has focused on a promising class of processes in which ammonia is destroyed by strong oxidizing agents at ambient temperature during semi-dry processing (the use of moisture amounts less than 5 wt-%). Both ozone and an ozone/peroxide combination have been used to treat both basic and acidic ammonia-laden ashes.
Date: October 10, 2001
Creator: Bockelie, Mike; Cremer, Marc; Davis, Kevin; Senior, Connie; Hurt, Bob; Eddings, Eric et al.
Partner: UNT Libraries Government Documents Department

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

Description: This is the third Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing cofunding for this program. This program contains multiple tasks and good progress is being made on all fronts. A Rich Reagent Injection (RRI) design has been developed for a cyclone fired utility boiler in which a field test of RRI will be performed later this year. Initial evaluations of RRI for PC fired boilers have been performed. Calibration tests have been developed for a corrosion probe to monitor waterwall wastage. Preliminary tests have been performed for a soot model within a boiler simulation program. Shakedown tests have been completed for test equipment and procedures that will be used to measure soot generation in a pilot scale test furnace. In addition, an initial set of controlled experiments for ammonia adsorption onto fly ash in the presence of sulfur have been performed that indicates the sulfur does enhance ammonia uptake.
Date: July 27, 2001
Creator: Bockelie, Mike; Cremer, Marc; Davis, Kevin; Hurt, Bob & Eddings, Eric
Partner: UNT Libraries Government Documents Department

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

Description: This is the second Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The focus of our efforts during the last three months have been on: (1) Completion of a long term field test for Rich Reagent Injection (RRI) at the Conectiv BL England Station Unit No.1, a 130 MW Cyclone fired boiler; (2) Extending our Computational Fluid Dynamics (CFD) based NOx model to accommodate the chemistry for RRI in PC fired boilers; (3) Design improvements and calibration tests of the corrosion probe; and (4) Investigations on ammonia adsorption mechanisms and removal processes for Fly Ash.
Date: January 31, 2001
Creator: Bockelie, Mike; Cremer, Marc; Davis, Kevin; Hurt, Bob & Eddings, Eric
Partner: UNT Libraries Government Documents Department

A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

Description: In this report is described the work effort to develop and demonstrate a software framework to support advanced process simulations to evaluate the performance of advanced power systems. Integrated into the framework are a broad range of models, analysis tools, and visualization methods that can be used for the plant evaluation. The framework provides a tightly integrated problem-solving environment, with plug-and-play functionality, and includes a hierarchy of models, ranging from fast running process models to detailed reacting CFD models. The framework places no inherent limitations on the type of physics that can be modeled, numerical techniques, or programming languages used to implement the equipment models, or the type or amount of data that can be exchanged between models. Tools are provided to analyze simulation results at multiple levels of detail, ranging from simple tabular outputs to advanced solution visualization methods. All models and tools communicate in a seamless manner. The framework can be coupled to other software frameworks that provide different modeling capabilities. Three software frameworks were developed during the course of the project. The first framework focused on simulating the performance of the DOE Low Emissions Boiler System Proof of Concept facility, an advanced pulverized-coal combustion-based power plant. The second framework targeted simulating the performance of an Integrated coal Gasification Combined Cycle - Fuel Cell Turbine (IGCC-FCT) plant configuration. The coal gasifier models included both CFD and process models for the commercially dominant systems. Interfacing models to the framework was performed using VES-Open, and tests were performed to demonstrate interfacing CAPE-Open compliant models to the framework. The IGCC-FCT framework was subsequently extended to support Virtual Engineering concepts in which plant configurations can be constructed and interrogated in a three-dimensional, user-centered, interactive, immersive environment. The Virtual Engineering Framework (VEF), in effect a prototype framework, was developed through close collaboration with ...
Date: December 22, 2004
Creator: Bockelie, Mike; Swensen, Dave; Denison, Martin; Sarofim, Adel & Senior, Connie
Partner: UNT Libraries Government Documents Department

A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

Description: This is the thirteenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a Virtual Engineering-based framework for simulating the performance of Advanced Power Systems. Within the last quarter, good progress has been made on all aspects of the project. Software development efforts have focused on a preliminary detailed software design for the enhanced framework. Given the complexity of the individual software tools from each team (i.e., Reaction Engineering International, Carnegie Mellon University, Iowa State University), a robust, extensible design is required for the success of the project. In addition to achieving a preliminary software design, significant progress has been made on several development tasks for the program. These include: (1) the enhancement of the controller user interface to support detachment from the Computational Engine and support for multiple computer platforms, (2) modification of the Iowa State University interface-to-kernel communication mechanisms to meet the requirements of the new software design, (3) decoupling of the Carnegie Mellon University computational models from their parent IECM (Integrated Environmental Control Model) user interface for integration with the new framework and (4) development of a new CORBA-based model interfacing specification. A benchmarking exercise to compare process and CFD based models for entrained flow gasifiers was completed. A summary of our work on intrinsic kinetics for modeling coal gasification has been completed. Plans for implementing soot and tar models into our entrained flow gasifier models are outlined. Plans for implementing a model for mercury capture based on conventional capture technology, but applied to an IGCC system, are outlined.
Date: January 28, 2004
Creator: Bockelie, Mike; Swensen, Dave; Denison, Martin; Chen, Zumao; Maguire, Mike; Sarofim, Adel et al.
Partner: UNT Libraries Government Documents Department

A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

Description: This is the tenth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, good progress has been made on all aspects of the project. Calculations for a full Vision 21 plant configuration have been performed for two gasifier types. An improved process model for simulating entrained flow gasifiers has been implemented into the workbench. Model development has focused on: a pre-processor module to compute global gasification parameters from standard fuel properties and intrinsic rate information; a membrane based water gas shift; and reactors to oxidize fuel cell exhaust gas. The data visualization capabilities of the workbench have been extended by implementing the VTK visualization software that supports advanced visualization methods, including inexpensive Virtual Reality techniques. The ease-of-use, functionality and plug-and-play features of the workbench were highlighted through demonstrations of the workbench at a DOE sponsored coal utilization conference. A white paper has been completed that contains recommendations on the use of component architectures, model interface protocols and software frameworks for developing a Vision 21 plant simulator.
Date: April 25, 2003
Creator: Bockelie, Mike; Swensen, Dave; Denison, Martin; Senior, Connie; Chen, Zumao; Linjewile, Temi et al.
Partner: UNT Libraries Government Documents Department

A COMPUTATIONAL WORKBENCH ENVIRONMENT FOR VIRTUAL POWER PLANT SIMULATION

Description: This is the eighth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT41047. The goal of the project is to develop and demonstrate a computational workbench for simulating the performance of Vision 21 Power Plant Systems. Within the last quarter, good progress has been made on all aspects of the project. Calculations for a full Vision 21 plant configuration have been performed for two coal types and two gasifier types. Good agreement with DOE computed values has been obtained for the Vision 21 configuration under ''baseline'' conditions. Additional model verification has been performed for the flowing slag model that has been implemented into the CFD based gasifier model. Comparisons for the slag, wall and syngas conditions predicted by our model versus values from predictive models that have been published by other researchers show good agreement. The software infrastructure of the Vision 21 workbench has been modified to use a recently released, upgraded version of SCIRun.
Date: January 25, 2003
Creator: Bockelie, Mike; Swensen, Dave; Denison, Martin; Senior, Connie; Chen, Zumao; Linjewile, Temi et al.
Partner: UNT Libraries Government Documents Department

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

Description: This is the eighth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. CFD modeling studies of RRI in a full scale utility boiler have been performed that provide further insight into the NOx reduction process that occurs if the furnace is not adequately staged. In situ reactivity data indicate thus far that titania sulfates under SCR conditions but there is no indication of vanadia sulfation in agreement with some, but not most literature results. Additional analysis and advanced diagnostics are under way to confirm this result and determine its accuracy. Construction of a catalyst characterization reactor system is nearly complete, with a few remaining details discussed in this report. Shakedown testing of the SCR field reactor was completed at the University of Utah pilot-scale coal furnace. The CEM system has been ordered. Talks continued with American Electric Power about hosting a demonstration at their Rockport plant.
Date: July 28, 2002
Creator: Bockelie, Mike; Cremer, Marc; Davis, Kevin; Senior, Connie; Hurt, Bob; Eddings, Eric et al.
Partner: UNT Libraries Government Documents Department

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

Description: This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. A series of field tests for RRI at the Ameren Sioux Unit No.1 have demonstrated that RRI can provide up to 30% NOx reduction over the use of over fire air in large scale (480MW) cyclone fired utility boilers. The field tests and modeling results are in good agreement. Final data analysis has been completed for tests performed at Eastlake Power Station of a real-time waterwall corrosion monitoring system. The tests demonstrated that corrosion could be measured accurately in real-time in normal boiler operations, and an assessment of waterwall wastage could be made without impacting boiler availability. Detailed measurements of soot volume fraction have been performed for a coal burner in a pilot scale test furnace. The measured values are in good agreement with the expected trends for soot generation and destruction. Catalysts from four commercial manufacturers have been ordered and one of the samples was received this quarter. Several in situ analyses of vanadium-based SCR catalyst systems were completed at BYU. Results to date indicate that the system produces results that represent improvements compared to literature examples of similar experiments. Construction of the catalyst characterization system (CCS) reactor is nearly complete, with a few remaining details discussed in this report. A literature review originally commissioned from other parties is being updated and will be made available under separate cover as part of this investigation. Fabrication of the ...
Date: April 30, 2002
Creator: Bockelie, Mike; Cremer, Marc; Davis, Kevin; Senior, Connie; Hurt, Bob; Eddings, Eric et al.
Partner: UNT Libraries Government Documents Department

NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

Description: This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates.
Date: January 31, 2002
Creator: Bockelie, Mike; Cremer, Marc; Davis, Kevin; Senior, Connie; Hurt, Bob; Suuberg, Eric et al.
Partner: UNT Libraries Government Documents Department

NOx Control Options and Integration for US Coal Fired Boilers

Description: This is the twentieth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At the beginning of this quarter, the corrosion probes were removed from Gavin Station. Data analysis and preparation of the final report continued this quarter. This quarterly report includes further results from the BYU catalyst characterization lab and the in-situ FTIR lab, and includes the first results from tests run on samples cut from the commercial plate catalysts. The SCR slipstream reactor at Plant Gadsden was removed from the plant, where the total exposure time on flue gas was 350 hours. A computational framework for SCR deactivation was added to the SCR model.
Date: June 30, 2005
Creator: Bockelie, Mike; Davis, Kevin; Denison, Martin; Senior, Connie; Shim, Hong-Shig; Shino, Darren et al.
Partner: UNT Libraries Government Documents Department

NOx Control Options and Integration for US Coal Fired Boilers

Description: This is the seventeenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. The SCR slipstream reactor was assembled and installed at Plant Gadsden this quarter. Safety equipment for ammonia had not been installed at the end of the quarter, but will be installed at the beginning of next quarter. The reactor will be started up next quarter. Four ECN corrosion probes were reinstalled at Gavin and collected corrosion data for approximately one month. Two additional probes were installed and removed after about 30 hours for future profilometry analysis. Preliminary analysis of the ECN probes, the KEMA coupons and the CFD modeling results all agree with the ultrasonic tube test measurements gathered by AEP personnel.
Date: September 30, 2004
Creator: Bockelie, Mike; Davis, Kevin; Shino, Connie Senior Darren; Swenson, Dave; Baxter, Larry; Bartholomew, Calvin et al.
Partner: UNT Libraries Government Documents Department

NOx Control Options and Integration for US Coal Fired Boilers

Description: This is the sixteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. During an unplanned outage, damage occurred to the electrochemical noise corrosion probes installed at the AEP Gavin plant; testing is expected to resume in August. The KEMCOP corrosion coupons were not affected by the unplanned outage; the coupons were removed and sent for analysis. BYU conducted a series of tests before the ISSR lab was relocated. Ammonia adsorption experiments provided clear evidence of the types of acidic sites present on catalyst surfaces. Data collected this quarter indicate that surface sulfation decreases Lewis acid site concentrations for all catalysts thus far studied, confirming that catalytic activity under commercial coal-based SCR conditions occurs primarily on Br{o}nsted acid sites and would be susceptible to basic impurities such as alkali and alkaline earth oxides, chlorides, and sulfates. SCR activity tests based on MS analysis showed that increasing sulfation generally increases NO reduction activity for both 0% and 1% vanadia catalysts. During this quarter, the slipstream reactor at Rockport operated for 720 hours on flue gas. Catalyst exposure time reached 4500 hours since installation. The reactor is out of service at the Rockport plant and plans are being made to move it to the Gadsden Plant. At Gadsden, modifications have begun in preparation for installation of the slipstream reactor next quarter.
Date: June 30, 2004
Creator: Bockelie, Mike; Davis, Kevin; Linjewile, Temi; Senior, Connie; Eddings, Eric; Whitty, Kevin et al.
Partner: UNT Libraries Government Documents Department

NOx Control Options and Integration for US Coal Fired Boilers

Description: This is the nineteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Refurbished corrosion probes were installed at Plant Gavin and operated for approximately 1,300 hours. This quarterly report includes further results from the BYU catalyst characterization lab and the in-situ lab, and includes the first results from a model suitable for comprehensive simulation codes for describing catalyst performance. The SCR slipstream reactor at Plant Gadsden operated for approximately 100 hours during the quarter because of ash blockage in the inlet probe.
Date: March 31, 2005
Creator: Bockelie, Mike; Davis, Kevin; Senior, Connie; Shino, Darren; Swenson, Dave; Baxter, Larry et al.
Partner: UNT Libraries Government Documents Department

NOx Control Options and Integration for US Coal Fired Boilers

Description: This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a new effort was begun on the development of a corrosion management system for minimizing the impacts of low NOx combustion systems on waterwalls; a kickoff meeting was held at the host site, AEP's Gavin Plant, and work commenced on fabrication of the probes. FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Improvements on the mass-spectrometer system at BYU have been made and work on the steady state reactor system shakedown neared completion. The slipstream reactor continued to operate at AEP's Rockport plant; at the end of the quarter, the catalysts had been exposed to flue gas for about 1000 hours. Some operational problems were addressed that enable the reactor to run without excessive downtime by the end of the quarter.
Date: June 30, 2003
Creator: Bockelie, Mike; Davis, Kevin; Linjewile, Temi; Senior, Connie; Eddings, Eric; Whitty, Kevin et al.
Partner: UNT Libraries Government Documents Department

NOx Control Options and Integration for US Coal Fired Boilers

Description: This is the fourteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. Using the initial CFD baseline modeling of the Gavin Station and the plant corrosion maps, six boiler locations for the corrosion probes were identified and access ports have been installed. Preliminary corrosion data obtained appear consistent and believable. In situ, spectroscopic experiments at BYU reported in part last quarter were completed. New reactor tubes have been made for BYU's CCR that allow for testing smaller amounts of catalyst and thus increasing space velocity; monolith catalysts have been cut and a small reactor that can accommodate these pieces for testing is in its final stages of construction. A poisoning study on Ca-poisoned catalysts was begun this quarter. A possible site for a biomass co-firing test of the slipstream reactor was visited this quarter. The slipstream reactor at Rockport required repair and refurbishment, and will be re-started in the next quarter. This report describes the final results of an experimental project at Brown University on the fundamentals of ammonia / fly ash interactions with relevance to the operation of advanced NOx control technologies such as selective catalytic reduction. The Brown task focused on the measurement of ammonia adsorption isotherms on commercial fly ash samples subjected to a variety of treatments and on the chemistry of dry and semi-dry ammonia removal processes.
Date: December 31, 2003
Creator: Bockelie, Mike; Davis, Kevin; Linjewile, Temi; Senior, Connie; Eddings, Eric; Whitty, Kevin et al.
Partner: UNT Libraries Government Documents Department