38 Matching Results

Search Results

Advanced search parameters have been applied.

Detailed mineralogical characterization of the Bullfrog and Tram members USW-G1, with emphasis on clay mineralogy

Description: The detailed mineralogy of the Bullfrog and Tram Members of the Crater Flat Tuff from drill hole USW-G1 has been examined, primarily to characterize fully the amounts and types of clay minerals in the tuffs and the possible effects clay minerals have on rock properties. Results of bulk sample x-ray diffraction analyses agree closely with previous determinations, although slightly higher clay mineral contents were found in this study. X-ray diffraction analysis of fine fractions revealed that the clay minerals in the tuffs are sodium-saturated montmorillonite-beidellites with typical layer charges and no high-charge layers. These smectites are found in virtually all samples of the Bullfrog and Tram, and there is no correlation between the amounts of smectites and the amounts of zeolite, quartz, and feldspar. Smectites are present in both welded and nonwelded horizons and are scarce in some zones with slight-to-absent welding.
Date: October 1, 1981
Creator: Bish, D.L.
Partner: UNT Libraries Government Documents Department

Evaluation of past and future alterations in tuff at Yucca Mountain, Nevada, based on the clay mineralogy of drill cores USW G-1, G-2, and G-3

Description: The tuffs at Yucca Mountain in south-central Nevada are being studied by the Yucca Mountain Project (YMP) to determine their suitability for a high-level radioactive waste repository. For predictive purposes, it is important to understand the alteration history of Yucca Mountain and to know how the minerals in Yucca Mountain tuffs respond to changing conditions such as elevated temperatures. The clay mineralogy of these tuffs has been examined using x-ray powder diffraction, and approximation temperatures of alteration have been determined using available clay mineral data and fluid inclusion analyses. Also, several illites from drill holes USW G-1 and G-2 have been dated using K/Ar techniques, yielding ages of about 11 Myr. The clay mineral in Yucca Mountain tuffs are predominantly interstratified illite/smectites, with minor amounts of chloride, kaolinite, and interstratified chlorite/smectite at depth in USW G-1 and G-2. The reactions observed for these illite/smectites are similar to those observed in pelitic rocks. With depths, the illite/smectites transform from random interstratifications (R = 0) through ordered intermediates (R = 1) to illite in USW G-2 and to Kalkberg (R {ge} 3) interstratifications in USW G-1. The illite/smectites in USW G-3 have not significantly transformed. It appears that the illites in deeper rock results from hydrothermal and diagenetic reactions of earlier-formed smectites. These data demonstrate that the rocks at depth in the northern end of Yucca Mountain were significantly altered about 11 Myr ago. Both clay mineralogy and fluid inclusions suggest that the rocks at depth in USW G-2 have been subjected to postdepositional temperatures of at least 275{degree}C, those in USW G-1 have reached 200{degree}C, and USW G-3 rocks probably have not exceeded 100{degree}C. 64 refs., 9 figs., 3 tabs.
Date: March 1, 1989
Creator: Bish, D.L.
Partner: UNT Libraries Government Documents Department

Smectite dehydration and stability: Applications to radioactive waste isolation at Yucca Mountain, Nevada

Description: Montmorillonite-beidellite smectites are present in amounts up to 50% in the rocks directly underlying the potential high-level radioactive waste repository horizon at Yucca Mountain, Nevada. The thermal reactions of concern include reversible collapse/expansion of the smectite layers due to loss/gain of interlayer water;irreversible collapse due to loss of interlayer water and migration of interlayer cations into the 2:1 silicate layers;irreversible reduction of the osmotic swelling ability through reaction in a steam atmosphere;and inhomogeneous transformation of the smectite into an interstratified illite/smectite. Reversible collapse should be of minor importance because any thermally driven collapse will be reversed when water is introduced and temperatures go down. The amounts of smectite in the potential repository horizon itself are probably insufficient to give rise to rock strength problems due to reversible collapse. The irreversible reduction of somotic selling capacity in a steam environment may be significant in the rocks near the repository horizon. This effect on naturally occurring Na-rich smectites would probably increase permeabilitie shut would also provide for increased cation exchange by the smectite. 60 refs., 9 figs.
Date: March 1, 1988
Creator: Bish, D.L.
Partner: UNT Libraries Government Documents Department

Thermal stability of zeolitic tuff from Yucca Mountain, Nevada

Description: Thermal models of the proposed repository at Yucca Mountain, Nevada, suggest that rocks near the proposed host rock will experience elevated temperatures for at least 1000 yrs. In order to assess the effects of elevated temperatures on zeolites clinoptilolite and mordenite were investigated using a combination of high-temperature X-ray powder diffraction, thermogravimetric and differential scanning calorimetric analysis, and long-term heating experiments. 13 refs., 7 figs.
Date: April 1, 1990
Creator: Bish, D.L.
Partner: UNT Libraries Government Documents Department

Mineralogy of drill holes J-13, UE-25A No. 1, and USW G-1 at Yucca Mountain, Nevada

Description: The mineralogy of drill holes J-13, UE-25A No. 1, and USW G-1 was previously determined using qualitative and semiquantitative techniques, and most of the available data were neither complete nor accurate. New quantitative x-ray diffraction data were obtained for rocks from all three of these drill holes at Yucca Mountain, Nevada. These quantitative analyses employed both external and internal standard x-ray powder diffraction methods and permitted the precise determination of all phases commonly found in the tuffs at Yucca Mountain, including glass and opal-CT. These new data supplant previous analyses and include numerous additional phases. New findings of particular importance include better constraints on the distribution of the more soluble silica polymorphs, cristobalite and opal-CT. Opal-CT was associated solely with clinoptilolite-bearing horizons, and cristobalite disappearance coincided with the appearance of analcime in USW G-1. Unlike previous analyses, we identified significant amounts of smectite in drill hole J-13. We found no evidence to support previous reports of the occurrence of erionite or phillipsite in these drill holes.
Date: September 1, 1986
Creator: Bish, D.L. & Chipera, S.J.
Partner: UNT Libraries Government Documents Department

Mineralogy of drill hole UE-25p#1 at Yucca Mountain, Nevada

Description: Drill hole UE-25p{number_sign}1 is located east of the candidate repository block at Yucca Mountain, Nevada, and as such provides information on the geology of the accessible environment. The hole was drilled to a depth of 1807 m (5923 ft) and is unique in that it penetrates tuffs that are older than any volcanic units previously encountered in drill holes at Yucca Mountain. In addition, it is the only hole drilled to date that penetrates the base of the tuff sequence and enters the underlying Paleozoic dolomite basement. We have examined the mineralogy of drill cuttings, core, and sidewall samples from drill hole UE-25p{number_sign}1 is similar to that in the other drill holes examined at Yucca Mountain. The only significant differences in mineralogy from other drill holes include the presence of dolomite in the Paleozoic carbonate rocks and the occurrence of up to 3% laumontite, a Ca-zeolite, in four samples of the Lithic Ridge Tuff. 15 refs., 5 figs., 4 tabs.
Date: May 1, 1988
Creator: Chipera, S.J. & Bish, D.L.
Partner: UNT Libraries Government Documents Department

Mineralogic summary of Yucca Mountain, Nevada

Description: Quantitative x-ray powder diffraction analysis of tuffs and silicic lavas, using matrix-flushing techniques, has been used to obtain a model of three-dimensional mineral distributions at Yucca Mountain, Nevada. This method of analysis is especially useful in tuff, where the most abundant phases are commonly too fine grained for optical determination. The three-dimensional distributions of primary glass and of tridymite are particularly well constrained. Vitric nonwelded glasses occur above and below the welded devitrified Topopah Spring Member, but the glass in the lower nonwelded vitric zone is progressively altered to zeolites to the east where the zone is closer to the static water level. The zeolites clinoptilolite, mordenite, heulandite, and erionite have all been found at Yucca Mountain, but only mordenite and clinoptilolite are abundant and can be mapped between many drill holes and at many depths. Heulandite distribution is also mappable, but only below the densely welded devitrified part of the Topopah Storing Member. Erionite has been confirmed only once, as a fracture coating. There is a fairly continuous smectite-rich interval immediately above the basal vitrophyre of the Topopah Spring Member, but no evidence suggests that the smectites can provide information on the paleogroundwater table. There are at least four mappable zeolitized zones in Yucca Mountain, and the thicker zones tend to coincide with intervals that retained glass following early tuff devitrification. Problems in extrapolation occur where zones of welding pinch out. No phillipsite has been found, and some samples previously reported to contain phillipsite or erionite were reexamined with negative results. The deeper alteration to albite and analcime was not sampled in every drill hole, and the distribution of these phases is difficult to map.
Date: October 1, 1985
Creator: Bish, D.L. & Vaniman, D.T.
Partner: UNT Libraries Government Documents Department

Revised mineralogic summary of Yucca Mountain, Nevada

Description: We have evaluated three-dimensional mineral distribution at Yucca Mountain, Nevada, using quantitative x-ray powder diffraction analysis. All data were obtained on core cuttings, or sidewall samples obtained from drill holes at and around Yucca Mountain. Previously published data are included with corrections, together with new data for several drill holes. The new data presented in this report used the internal standard method of quantitative analysis, which yields results of high precision for the phases commonly found in Yucca Mountain tuffs including opal-CT and glass. Mineralogical trends with depth previously noted are clearly shown by these new data. Glass occurrence is restricted almost without exception to above the present-day static water level (SWL), although glass has been identified below the SWL in partially zeolitized tuffs. Silica phases undergo well-defined transitions with depth, with tridymite and cristobalite occurring only above the SWL, opal-CT occurring with clinoptilolite-mordenite tuffs, and quartz most abundant below the SWL. Smectite occurs in small amounts in most samples but is enriched in two distinct zones. These zones are at the top of the vitric nonwelded base of the Tiva Canyon Member and at the top of the basal vitrophyre of the Topopah Spring Member. Our data support the presence of several zones of mordenite and clinoptilolite-heulandite as shown previously. New data on several deep clinoptililite-heulandite samples coexisting with analcime show that they are heulandite. Phillipsite has not been found in any Yucca Mountain samples, but erionite and chabazite have been found once in fractures. 21 refs., 17 figs.
Date: March 1, 1989
Creator: Bish, D.L. & Chipera, S.J.
Partner: UNT Libraries Government Documents Department

The occurrence and distribution of erionite at Yucca Mountain, Nevada

Description: We have conducted an investigation to determine the occurrence and distribution of erionite, a potential carcinogen, at Yucca Mountain, Nevada. Using x-ray powder diffraction techniques yielding detection limits to below 0.05 wt %, we positively identified erionite in only 3 out of 76 bulk and 12 fracture samples investigated. The three erionite-bearing samples (J12-620/630, UE-25aNo.1-1296.2, and USW G4-1314) all occur above the static water level in clay/zeolite-rich horizons near the top of vitrophyres. Erionite occurs as trace amounts of less than 1 wt % in the whole rock, although it may occur locally in significant amounts as fracture fillings (e.g., UE-25aNo.1-1296.2 where it comprises approximately 45 wt % of the fracture filling material). All three occurrences appear to be extremely isolated cases since erionite was not detected in neighboring samples. Erionite at Yucca Mountain apparently formed only in localized microenvironments, possibly restricted to fractures. Since erionite occurs in trace amounts only in extremely isolated instances, it should pose little or no health hazard to workers in the potential repository at Yucca Mountain or to the public. The amounts of erionite liberated to the biosphere should be negligible, particularly when compared with the amounts of erionite occurring naturally at the surface in Nevada and surrounding states. 24 refs., 7 figs., 2 tabs.
Date: September 1, 1989
Creator: Chipera, S.J. & Bish, D.L.
Partner: UNT Libraries Government Documents Department

Quantitative x-ray diffraction analyses of samples used for sorption studies by the Isotope and Nuclear Chemistry Division, Los Alamos National Laboratory

Description: Yucca Mountain, Nevada, is currently being investigated to determine its suitability to host our nation`s first geologic high-level nuclear waste repository. As part of an effort to determine how radionuclides will interact with rocks at Yucca Mountain, the Isotope and Nuclear Chemistry (INC) Division of Los Alamos National Laboratory has conducted numerous batch sorption experiments using core samples from Yucca Mountain. In order to understand better the interaction between the rocks and radionuclides, we have analyzed the samples used by INC with quantitative x-ray diffraction methods. Our analytical methods accurately determine the presence or absence of major phases, but we have not identified phases present below {approximately}1 wt %. These results should aid in understanding and predicting the potential interactions between radionuclides and the rocks at Yucca Mountain, although the mineralogic complexity of the samples and the lack of information on trace phases suggest that pure mineral studies may be necessary for a more complete understanding. 12 refs., 1 fig., 1 tab.
Date: September 1, 1989
Creator: Chipera, S.J. & Bish, D.L.
Partner: UNT Libraries Government Documents Department

Manganese-oxide minerals in fractures of the Crater Flat Tuff in drill core USW G-4, Yucca Mountain, Nevada

Description: The Crater Flat Tuff is almost entirely below the water table in drill hole USW G-4 at Yucca Mountain, Nevada. Manganese-oxide minerals from the Crater Flat Tuff in USW G-4 were studied using optical, scanning electron microscopic, electron microprobe, and x-ray powder diffraction methods to determine their distribution, mineralogy, and chemistry. Manganese-oxide minerals coat fractures in all three members of the Crater Flat Tuff (Prow Pass, Bullfrog, and Tram), but they are most abundant in fractures in the densely welded devitrified intervals of these members. The coatings are mostly of the cryptomelane/hollandite mineral group, but the chemistry of these coatings varies considerably. Some of the chemical variations, particularly the presence of calcium, sodium, and strontium, can be explained by admixture with todorokite, seen in some x-ray powder diffraction patterns. Other chemical variations, particularly between Ba and Pb, demonstrate that considerable substitution of Pb for Ba occurs in hollandite. Manganese-oxide coatings are common in the 10-m interval that produced 75% of the water pumped from USW G-4 in a flow survey in 1983. Their presence in water-producing zones suggests that manganese oxides may exert a significant chemical effect on groundwater beneath Yucca Mountain. In particular, the ability of the manganese oxides found at Yucca Mountain to be easily reduced suggests that they may affect the redox conditions of the groundwater and may oxidize dissolved or suspended species. Although the Mn oxides at Yucca Mountain have low exchange capacities, these minerals may retard the migration of some radionuclides, particularly the actinides, through scavenging and coprecipitation. 23 refs., 21 figs., 2 tabs.
Date: July 1, 1990
Creator: Carlos, B.A.; Bish, D.L. & Chipera, S.J.
Partner: UNT Libraries Government Documents Department

A preliminary comparison of mineral deposits in faults near Yucca Mountain, Nevada, with possible analogs

Description: Several faults near Yucca Mountain, Nevada, contain abundant calcite and opal-CT, with lesser amounts of opal-A and sepiolite or smectite. These secondary minerals are being studied to determine the directions, amounts, and timing of transport involved in their formation. Such information is important for evaluating the future performances of a potential high-level nuclear waste repository beneath Yucca Mountain. This report is a preliminary assessment of how those minerals were formed. Possible analog deposits from known hydrothermal veins, warm springs, cold springs or seeps, soils, and aeolian sands were studied by petrographic and x-ray diffraction methods for comparison with the minerals deposited in the faults; there are major mineralogic differences in all of these environments except in the aeolian sands and in some cold seeps. Preliminary conclusions are that the deposits in the faults and in the sand ramps are closely related, and that the process of deposition did not require upward transport from depth. 35 refs., 25 figs.
Date: May 1, 1988
Creator: Vaniman, D.T.; Bish, D.L. & Chipera, S.
Partner: UNT Libraries Government Documents Department

Further description of the petrology of the Topopah Spring member of the paintbrush tuff in drill holes UE25A-1 and USW-G1 and of the lithic-rich tuff in USW-G1, Yucca Mountain, Nevada

Description: The Topopah Spring Member of the Paintbrush Tuff and the Lithic-rich tuff and two Tertiary volcanic units that occur in cores from drill holes UE25a-1 and USW-G1 at Yucca Mountain, Nevada. Recently they have been suggested as possibly suitable for the permanent storage of high-level radioactive waste. Earlier petrologic characterization of these units is augmented here. The Topopah Spring Member (approximately 350 m thick) has two compound cooling units. The upper, thinner unit is densely welded to vitrophyric. The lower unit ranges from nonwelded to vitrophyric, and its nonwelded base is extensively zeolitized to clinoptilolite and mordenite. Heulandite occurs as fracture fill in the overlying vitrophyric part, but zeolites are absent above that vitrophyre. Here primary devitrification plus vapor-phase crystallization dominate the mineralogy. Vapor-phase effects are especially prominent between the two vitrophyres in both cores and include numerous large lithophysal cavities throughout most of this moderately to densely welded tuff. The Lithic-rich tuff extends from 1203 to 1506 m in the USW-G1 drill core. It is nonwelded to partly welded but is well indurated due to pervasive intergrowths of authigenic minerals. These phases are analcime, albite, alkali feldspar, sericite, chlorite and quartz. The transition from analcime to secondary albite corresponds to Iijima`s zeolite Zone IV boundary, and this boundary appears in USW-G1 at 1326 m. However, analcime remains as a prominent phase through most of the Lithic-rich tuff. Further work is necessary to assess the suitability of either of these horizons for a waste repository. In the Topopah Spring Member, both mechanical and hydrologic properties of thick lithophysal zone must be studied, as well as the complete sequence of fracture fill. For both units, zeolite and clay mineral stabilities need to be investigated.
Date: November 1, 1981
Creator: Carroll, P.I.; Caporuscio, F.A. & Bish, D.L.
Partner: UNT Libraries Government Documents Department

Fracture-lining minerals in the lower Topopah Spring Tuff at Yucca Mountain

Description: Fracture-lining minerals in the lower Topopah Spring Member of the Paintbrush Tuff at Yucca Mountain, Nevada, are being examined to characterize potential flow paths within and away from the candidate repository horizon. Fracture coatings within this interval can be divided into five categories based on rock matrix and type of fracture. Fracture coatings in the densely welded tuff above the basal vitrophyre, near the candidate repository horizon, include (1) those related to lithophysal cavities; (2) mordenite and manganese oxides on nearly planar fractures; (3) later fracture coatings consisting of zeolites, smectite, and calcite. Fracture-coating minerals in the vitrophyre are fine-grained and consist of smectite and a variety of zeolites. The non- to partially-welded vitric and/or zeolitic stuff below the vitrophyre contains fractures mostly lined by cristobalite and clinoptilolite. 13 refs., 2 figs., 1 tab.
Date: January 1, 1991
Creator: Carlos, B.A.; Bish, D.L. & Chipera, S.J.
Partner: UNT Libraries Government Documents Department

The importance of zeolites in the potential high-level radioactive waste repository at Yucca Mountain, Nevada

Description: Zeolitic rocks play an important role in retarding the migration of radionuclides that occur in solution as simple cations (Cs, Sr, Ba). However, the interaction of zeolites with complex transuranic species in solution provides little if any advantage over other common silicate minerals. The most important consequences of zeolite occurrences near a high-level radioactive waste repository environment are likely to be their response to thermal loading and their impact on site hydrology. Partial zeolite dehydration during the early thermal pulse from the repository and rehydration as the repository slowly cools can have an important impact on the water budget of a repository in unsaturated rocks, provided that the long-term heating does not result in zeolite destabilization.
Date: July 1, 1993
Creator: Vaniman, D.T. & Bish, D.L.
Partner: UNT Libraries Government Documents Department

Inorganic contents of peats

Description: Peat, the precursor of coal, is composed primarily of plant components and secondarily of inorganic matter derived from a variety of sources. The elemental, mineralogic, and petrographic composition of a peat is controlled by a combination of both its botanical and depositional environment. Inorganic contents of peats can vary greatly between geographically separated peat bogs as well as vertially and horizontally within an individual bog. Predicting the form and distribution of inorganic matter in a coal deposit requires understanding the distribution and preservation of inorganic matter in peat-forming environments and diagenetic alterations affecting such material during late-stage peatification and coalification processes. 43 refs., 4 figs., 3 tabs.
Date: February 1, 1988
Creator: Raymond, R. Jr.; Bish, D.L. & Cohen, A.D.
Partner: UNT Libraries Government Documents Department

Petrography, mineralogy, and chemistry of calcite-silica deposits at Exile Hill, Nevada, compared with local spring deposits

Description: Chemical, mineralogic, and petrographic analyses of siliceous calcretes from Exile Hill east of Yucca Mountain, Nevada, indicate that pedogenic processes alone account for the formation of the calcretes. These calcretes have been interpreted by some observers as evidence of seismically triggered eruptions of deep water. Such an origin could have important consequences if Yucca Mountain is developed as an unsaturated site for the disposal of high-level nuclear waste. At odds with this hypothesis are the absence of features that should be present at fault-fed springs (e.g., fissure-ridge mounds with microterraces) and the preservation within root casts of delicate pedogenic microfossils, such as calcified filaments and needle-fiber calcites. Mineral-chemical evidence of pedogenic origin is found in heavy-mineral concentrations, reflected in Fe and Sc enrichments. These concentrations, which occur in the most massive of the vein calcretes, require derivation of detritus from a mixture of weathered and eolian materials that occur in the overlying B soil horizons, as opposed to direct incorporation of adjacent unweathered bedrock. Carbonate and silica abundances and accumulation rates are well within the scope of pedogenic processes. Calcium is derived from rainwater or eolian sources, whereas silica is derived in part by dissolution of local volcanic glasses or from dissolution of unstable silica minerals that are abundant in the local tuffs. In contrast with local deposits that are of spring or seep origin, the siliceous calcretes at Yucca Mountain are pedogenic in origin as well as evolution and provide no evidence in support of conjectured spring activity.
Date: December 1995
Creator: Vaniman, D. T.; Chipera, S. J. & Bish, D. L.
Partner: UNT Libraries Government Documents Department

Fracture coatings in Topopah Spring Tuff along drill hole wash

Description: Fracture-lining minerals are being studied as part of site characterization to determine the suitability of Yucca Mountain, Nevada as a potential high level nuclear waste repository. Fracture coatings in the Paintbrush Group provide information on potential flow paths above the water table both toward and away from the potential repository and provide information on the distribution of fracture-lining minerals needed to model thermal effects of waste emplacement. Fracture coatings within the predominantly non-zeolitic Paintbrush Group vary both with depth and laterally across Yucca Mountain, whereas fracture coatings in tuffs below the Paintbrush Group are related to the mineralogy of the tuffs and follow a consistent pattern of distribution with predominantly quartz, calcite, and manganese oxides in the devitrified intervals and mordenite and clinoptilolite in the zeolitic intervals. The zeolites stellerite and heulandite are more abundant in fractures in the Topopah Spring Tuff in drill holes USW G-1 and UE-25 a{number_sign}l, located along Drill Hole Wash (at the northern end of Yucca Mountain) than in core from other parts of Yucca Mountain. Buesch et al. (2) present evidence for a complex fault system along Drill Hole Wash. To investigate the possibility that the abundant fracture-lining zeolites in USW G-1 and UE-25 a{number_sign} 1 are related to the Drill Hole Wash fault, the Topopah Spring Tuff was examined in drill cores from USW UZ-14, USW G-1, USW NRG-7/7a, and UE-25 a{number_sign}l.
Date: December 1, 1994
Creator: Carlos, B.A.; Chipera, S.J. & Bish, D.L.
Partner: UNT Libraries Government Documents Department

Effects of long-term exposure of tuffs to high-level nuclear waste repository conditions. Final report

Description: We have performed exploratory tests to investigate the effects of extended exposure of tuffs from Yucca Mountain, Nevada, to temperatures and pressures similar to those that will be encountered in a high-level nuclear waste repository. In a preliminary report we described statistically significant changes in strength properties and generally minor changes in porosity and grain density. In the present report we describe additional measurements that indicate possible changes in permeability (in one tuff type) after exposure for 2 to 6 months at temperatures from 80 to 180 C, confining pressures of 9.7 and 19.7 MPa, and water pore pressures of 0.5 and 19.7 MPa. Mineralogic examinations have established reactions involving dissolution of silica and feldspar minerals and possible conversion of clinoptilolite to mordenite. We conclude that rock properties important to the operation of a nuclear waste repository in tuff are likely to change over time when exposed to simulated repository conditions, and the details of these time-dependent processes should be investigated further.
Date: August 1, 1986
Creator: Blacic, J.D.; Vaniman, D.T.; Bish, D.L.; Duffy, C.J. & Gooley, R.C.
Partner: UNT Libraries Government Documents Department

Summary of the mineralogy-petrology of tuffs of Yucca Mountain and the secondary-phase thermal stability in tuffs

Description: Yucca Mountain is composed of a thick sequence of silicic tuffs that are quite variable in degree of welding, alteration, and zeolitization. Tuff units above the water table are commonly devitrified or still vitric, with the exception of the zeolitized Pah Canyon Member in USW-G2. The devitrified tuffs above the water table commonly contain alkali feldspar, quartz, tridymite, and cristobalite, with minor smectite. The vitric tuffs are partly to wholly altered to sodium-calcium-saturated smectite. Below the water table are generally densely welded nonzeolitized tuffs and less densely welded zeolite-containing tuffs. The specific mineral assemblage present in Yucca Mountain tuffs has important implications in choosing a repository. The secondary phases clinoptilolite, mordenite, and smectite are very important because of their large cation sorption capacities. However, whereas densely welded tuffs containing no zeolite or glass are resistant to heating and do not dehydrate significantly, zeolitized, vitric, and smectite-containing horizons are very sensitive to minor increases in temperature. Smectites are particularly sensitive to changes in water vapor pressure and temperature, and temperature increases can lead to water evolution and large volume reductions. Similarly, clinoptilolite and mordenite begin to dehydrate below 100{sup 0}C, resulting in volume decreases. The exact effect of temperature on vitric tuffs is unclear. Under hydrothermal conditions the smectites gradually transform to nonexpanding, low sorption capacity illites, and there is evidence that this reaction has occurred in the deeper portions of USW-G2. Clinoptilolite transforms under hydrothermal conditions to analcime plus quartz with a concomitant volume decrease and water evolution. Again, there is evidence of this reaction occurring in Yucca Mountain tuffs at 80 to 100{sup 0}C.
Date: November 1, 1982
Creator: Bish, D.L.; Vaniman, D.T.; Byers, F.M. Jr. & Broxton, D.E.
Partner: UNT Libraries Government Documents Department

Preliminary assessment of clinoptilolite K/Ar results from Yucca Mountain, Nevada: A potential high-level radioactive waste repository site

Description: At Yucca Mountain, evidence for at least three distinct temporal groups of clinoptilolites can be delineated from the preliminary K/Ar dates (2--3 Ma; 4--5 Ma; 7--11 Ma). The older K/Ar dates that are similar to published illite/smectite ages (9--12 Ma) may be crystallization ages, whereas the younger dates probably represent continued diagenetic reactions of older clinoptilolites with percolating fluids. The K/Ar dates increase with depth, suggesting minimal argon loss in the deeper samples. Internal consistency of the clinoptilolite K/Ar results at different levels within the drill holes suggest that dating of K-rich zeolites may provide useful information for assessing the zeolitization at Yucca Mountain. Variations in the K/Ar dates are probably related to Ar loss during dissolution of older clinoptilolites and to contamination by finely crystalline feldspars.
Date: March 1, 1992
Creator: WoldeGabriel, G.; Bish, D.L.; Broxton, D.E. & Chipera, S.J.
Partner: UNT Libraries Government Documents Department

Distribution and chemistry of fracture-lining minerals at Yucca Mountain, Nevada

Description: Yucca Mountain, a >1.5-km-thick sequence of tuffs and subordinate lavas in southwest Nevada, is being investigated as a potential high-level nuclear waste repository site. Fracture-lining minerals have been studied because they may provide information on past fluid transport and because they may act as natural barriers to radionuclide migration within the fractures. Cores from seven drill holes have been studied to determine the distribution and chemistry of minerals lining fractures at Yucca Mountain. Fracture-lining minerals in tuffs of the Paintbrush Group, which is above the static water level at Yucca Mountain, are highly variable in distribution, both vertically and laterally across the mountain, with the zeolites mordenite, heulandite, and stellerite widespread in fractures even though the tuff matrix is generally devitrified and nonzeolitic. Where heulandite occurs as both tabular and prismatic crystals in the same fracture, the two morphologies have different compositions, suggesting multiple episodes of zeolite formation within the fractures. Manganese-oxide minerals within the Paintbrush Group are rancieite and lithiophorite. The silica polymorphs (quartz, tridymite, and cristobalite) generally exist in fractures where they exist in the matrix, suggesting that they formed in the fractures at the same time they formed in the matrix. Fluorite, calcite, and opal occur over tridymite in some lithophysal cavities. Calcite also occurs over zeolites in fractures unrelated to lithophysal cavities and is often the youngest mineral in a given fracture. The clays smectite, palygorskite, and sepiolite are common in fractures in the Paintbrush Group in drill core USW GU-3; smectite is an abundant fracture-coating mineral in all drill cores at Yucca Mountain.
Date: December 1, 1995
Creator: Carlos, B.A.; Chipera, S.J. & Bish, D.L.
Partner: UNT Libraries Government Documents Department

Equilibrium modeling of the formation of zeolites in fractures at Yucca Mountain, Nevada

Description: Yucca Mountain, in southern Nevada, is currently being investigated to determine its suitability to host the first US high-level nuclear waste repository. One of the reasons that Yucca Mountain was chosen for study is the presence of thick sequences of zeolite-rich horizons. In as much as fractures may serve as potential pathways for aqueous transport, the minerals that line fractures are of particular interest. Zeolites are common in fractures at Yucca Mountain and consist mainly of clinoptilolite/heulandite and mordenite although sporadic occurrences of chabazite, erionite, phillipsite, and stellrite have been identified using X-ray powder diffraction. To understand better the conditions under which the observed zeolite species were formed, thermodynamic data were estimated and calculations of log a((K{sup +}){sup 2}/Ca{sup ++}) versus log a((Na{sup +}){sup 2}/Ca{sup ++}) were conducted at various temperatures and silica activities. Using present-day Yucca Mountain water chemistries as a lower constraint on silica activity, clinoptilolite/heulandite and mordenite are still the zeolite species that would form under present conditions.
Date: August 1993
Creator: Chipera, S. J.; Bish, D. L. & Carlos, B. A.
Partner: UNT Libraries Government Documents Department

Mineralogic variation in drill core UE-25 UZ{number_sign}16, Yucca Mountain, Nevada

Description: Quantitative X-ray powder diffraction methods have been used to analyze 108 samples from drill core UE-25 UZ{number_sign}16 at Yucca Mountain, Nevada. This drill hole, located within the imbricate fault zone east of the potential Yucca Mountain repository site, confirms the authors` previous knowledge of gross-scale mineral distributions at Yucca Mountain and provides insight into possible shallow pathways for hydrologic recharge into the potential host rock. Analyses of samples from UE-25 UZ{number_sign}16 have shown that the distribution of major zeolitized horizons, of silica phases, and of glassy tuffs are similar to those noted in nearby drill cores. However, the continuous core and closer sample spacing in UE-25 UZ{number_sign}16 provide a more exact determination of mineral stratigraphy, particularly in hydrologically important units such as the Paintbrush bedded tuffs above the Topopah Spring Tuff and in the upper vitrophyre of the Topopah Spring Tuff. The discovery of matrix zeolitization in the devitrified Topopah Spring Tuff of UE25 UZ{number_sign}16 shows that some unexpected mineralogic features can still be encountered in the exploration of Yucca Mountain and emphasizes the importance of obtaining a more complete three-dimensional model of Yucca Mountain mineralogy.
Date: February 1, 1995
Creator: Chipera, S.J.; Vaniman, D.T.; Carlos, B.A. & Bish, D.L.
Partner: UNT Libraries Government Documents Department