66 Matching Results

Search Results

Advanced search parameters have been applied.

FY05 LDRD Final Report Technology Basis for Fluorescence Imaging in the Nuclear Domain (FIND)

Description: Work performed as a part of this ER sets the foundation for applications of high brightness light sources to important homeland security and nonproliferation problems. Extensive modeling has been performed with the aim to understand the performance of a class of interrogation systems that exploit nuclear resonance fluorescence to detect specific isotopes, of particular importance for national security and industry.
Date: February 13, 2006
Creator: Barty, C J
Partner: UNT Libraries Government Documents Department

The Dawn of Nuclear Photonics with Laser-based Gamma-rays

Description: A renaissance in nuclear physics is occurring around the world because of a new kind of incredibly bright, gamma-ray light source that can be created with short pulse lasers and energetic electron beams. These highly Mono-Energetic Gamma-ray (MEGa-ray) sources produce narrow, laser-like beams of incoherent, tunable gamma-rays and are enabling access and manipulation of the nucleus of the atom with photons or so called 'Nuclear Photonics'. Just as in the early days of the laser when photon manipulation of the valence electron structure of the atom became possible and enabling to new applications and science, nuclear photonics with laser-based gamma-ray sources promises both to open up wide areas of practical isotope-related, materials applications and to enable new discovery-class nuclear science. In the United States, the development of high brightness and high flux MEGa-ray sources is being actively pursued at the Lawrence Livermore National Laboratory in Livermore (LLNL), California near San Francisco. The LLNL work aims to create by 2013 a machine that will advance the state of the art with respect to source the peak brightness by 6 orders of magnitude. This machine will create beams of 1 to 2.3 MeV photons with color purity matching that of common lasers. In Europe a similar but higher photon energy gamma source has been included as part of the core capability that will be established at the Extreme Light Infrastructure Nuclear Physics (ELI-NP) facility in Magurele, Romania outside of Bucharest. This machine is expected to have an end point gamma energy in the range of 13 MeV. The machine will be co-located with two world-class, 10 Petawatt laser systems thus allowing combined intense-laser and gamma-ray interaction experiments. Such capability will be unique in the world. In this talk, Dr. Chris Barty from LLNL will review the state of the art with respect ...
Date: March 17, 2011
Creator: Barty, C J
Partner: UNT Libraries Government Documents Department

Extreme prepulse contrast utilizing cascaded-optical parametric amplification

Description: It has been shown recently that an optical parametric chirped-pulse amplifier can be easily reconfigured into a cascaded-optical parametric amplifier (COPA), enabling complete prepulse removal and optical switching with a window defined by the pump pulse duration. We have demonstrated instrument-limited measurement of the COPA prepulse contrast >1.4 x 10{sup 11} using 30-mJ pulses. The COPA technique is applicable to all energy ranges and pulse durations. A convenient millijoule-scale implementation of this technique is presented using a single, large-aspect-ratio quasi-phase-matched nonlinear crystal.
Date: June 15, 2006
Creator: Jovanovic, I; Haefner, C; Wattellier, B & Barty, C J
Partner: UNT Libraries Government Documents Department

Comparison of amplified spontaneous emission pulse cleaners for use in chirped pulse amplification front end lasers

Description: We compare various schemes for removing amplified spontaneous emission from seed laser pulses. We focus on compact schemes that are compatible with fiber laser front end systems with pulse energies in the 10nJ-1{micro}J range and pulse widths in the 100fs-10ps range. Pre-pulse contrast ratios greater than 10{sup 9} have been measured.
Date: July 2, 2007
Creator: Dawson, J.; Siders, C.; Phan, H.; Kanz, V. & Barty, C.
Partner: UNT Libraries Government Documents Department

Modeling Multi-Bunch X-band Photoinjector Challenges

Description: An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray technology at LLNL. The test station will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. Of critical import to the functioning of the LLNL X-band system with multiple electron bunches is the performance of the photoinjector. In depth modeling of the Mark 1 LLNL/SLAC X-band rf photoinjector performance will be presented addressing important challenges that must be addressed in order to fabricate a multi-bunch Mark 2 photoinjector. Emittance performance is evaluated under different nominal electron bunch parameters using electrostatic codes such as PARMELA. Wake potential is analyzed using electromagnetic time domain simulations using the ACE3P code T3P. Plans for multi-bunch experiments and implementation of photoinjector advances for the Mark 2 design will also be discussed.
Date: May 9, 2012
Creator: Marsh, R A; Anderson, S G; Gibson, D J & Barty, C J
Partner: UNT Libraries Government Documents Department

Low-Intensity Nonlinear Spectral Effects in Compton Scattering

Description: Nonlinear effects are known to occur in Compton scattering light sources, when the laser normalized 4-potential, A = e{radical}-A{sub {mu}}A{sup {mu}}/m{sub 0}c approaches unity. In this letter, it is shown that nonlinear spectral features can appear at arbitrarily low values of A, if the fractional bandwidth of the laser pulse, {Delta}{phi}{sup -1}, is sufficiently small to satisfy A{sup 2} {Delta}{phi} {approx_equal} 1. A three dimensional analysis, based on a local plane-wave, slow-varying envelope approximation, enables the study of these effects for realistic interactions between an electron beam and a laser pulse, and their influence on high-precision Compton scattering light sources.
Date: February 23, 2010
Creator: Hartemann, F V; Albert, F; Siders, C W & Barty, C P
Partner: UNT Libraries Government Documents Department

Optical switching and contrast enhancement in intense laser systems by cascaded optical parametric amplification

Description: Optical parametric chirped-pulse amplification (OPCPA) can be used to improve the prepulse contrast in chirped-pulse amplification systems by amplifying the main pulse with a total saturated OPCPA gain, while not affecting the preceding prepulses of the seed oscillator mode-locked pulse train. We show that a simple modification of a multistage OPCPA system into a cascaded optical parametric amplifier (COPA) results in an optical switch and extreme contrast enhancement which can completely eliminate the preceding and trailing oscillator pulses. Instrument-limited measurement of prepulse contrast ratio of 1.4 x 10{sup 11} is demonstrated from COPA at a 30-mJ level.
Date: September 6, 2005
Creator: Jovanovic, I; Haefner, C; Wattellier, B & Barty, C J
Partner: UNT Libraries Government Documents Department

Ultrahigh-intensity laser: physics of the extreme on a tabletop

Description: This paper reviews the development of ultrahigh-intensity laser technology from the early 1960`s to the present, explaining the obstacles to each increase in intensity and the technical means used to overcome them. These included the shortening of pulses, mode locking, and chirped pulse amplification (CPA). The particular technical advances that make CPA possible included the invention of matched pulse stretchers and compressors and the development of ultrabroadband gain media. The paper then discusses the generation of ultrashort pulses and their characteristics. It then moves on to the Petawatt laser, which incorporates the CPA technology. It then addresses the question of whether it is possible to forecast the ultimate peak power that can be achieved by a laser system of a given size. Applications of ultrahigh-intensity lasers in different physical regimes are discussed.
Date: October 10, 1997
Creator: Mourou, G.A.; Barty, C.P. & Perry, M.D.
Partner: UNT Libraries Government Documents Department

Hybrid Chirped Pulse Amplification

Description: A hybrid terawatt-amplification scheme combining optical-parametric-chirped-pulse amplification and amplification in active laser media is demonstrated for the first time. This simple technique uses a single pump pulse and eliminates gain narrowing, allows efficient energy conversion and does not require electro-optic devices.
Date: November 7, 2001
Creator: Jovanovic, I. & Barty, C.
Partner: UNT Libraries Government Documents Department

A Drive Laser for Multi-Bunch Photoinjector Operation

Description: Numerous electron beam applications would benefit from increased average current without sacrificing beam brightness. Work is underway at LLNL to investigate the performance of X-band photoinjectors that would generate electron bunches at a rate matching the RF drive frequency, i.e. one bunch per RF cycle. A critical part of this effort involves development of photo-cathode drive laser technology. Here we present a new laser architecture that can generate pulse trains at repetition rates up to several GHz. This compact, fiber-based system is driven directly by the accelerator RF and so is inherently synchronized with the accelerating fields, and scales readily over a wide range of drive frequencies (L-band through X-band). The system will be required to produce 0.5 {mu}J, {approx}200 fs rise time, spatially and temporally shaped UV pulses designed to optimize the electron beam brightness. Presented is the current status of this system, producing 2 ps pulses from a continuous-wave source.
Date: May 11, 2012
Creator: Gibson, D J; Cormier, E; Messerly, M J; Prantil, M A & Barty, C J
Partner: UNT Libraries Government Documents Department

A grating-less, fiber-based oscillator that generates 25 nJ pulses

Description: We report a passively mode-locked fiber-based oscillator that has no internal dispersion-compensating gratings. This design, the first of its kind, produces 25 nJ pulses at 80 MHz with the pulses compressible to 150 fs. The pulses appear to be self-similar and initial data imply that their energy is further scalable.
Date: December 28, 2006
Creator: An, J; Kim, D; Dawson, J W; Messerly, M J & Barty, C J
Partner: UNT Libraries Government Documents Department

High energy mode locked fiber oscillators for high contrast, high energy petawatt laser seed sources

Description: In a high-energy petawatt laser beam line the ASE pulse contrast is directly related to the total laser gain. Thus a more energetic input pulse will result in increased pulse contrast at the target. We have developed a mode-locked fiber laser with high quality pulses and energies exceeding 25nJ. We believe this 25nJ result is scalable to higher energies. This oscillator has no intra-cavity dispersion compensation, which yields an extremely simple, and elegant laser configuration. We will discuss the design of this laser, our most recent results and characterization of all the key parameters relevant to it use as a seed laser. Our oscillator is a ring cavity mode-locked fiber laser [1]. These lasers operate in a self-similar pulse propagation regime characterized by a spectrum that is almost square. This mode was found theoretically [2] to occur only in the positive dispersion regime. Further increasing positive dispersion should lead to increasing pulse energy [2]. We established that the positive dispersion required for high-energy operation was approximately that of 2m of fiber. To this end, we constructed a laser cavity similar to [1], but with no gratings and only 2m of fiber, which we cladding pumped in order to ensure sufficient pump power was available to achieve mode-locked operation. A schematic of the laser is shown in figure 1 below. This laser produced low noise 25nJ pulses with a broad self similar spectrum (figure 2) and pulses that could be de-chirped to <100fs (figure 3). Pulse contrast is important in peta-watt laser systems. A major contributor to pulse contrast is amplified spontaneous emission (ASE), which is proportional to the gain in the laser chain. As the oscillator strength is increased, the required gain to reach 1PW pulses is decreased, reducing ASE and improving pulse contrast. We believe these lasers can be ...
Date: June 15, 2006
Creator: Dawson, J W; Messerly, M J; An, J; Kim, D & Barty, C J
Partner: UNT Libraries Government Documents Department

Laser Systems for Orbital Debris Removal

Description: The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.
Date: February 5, 2010
Creator: Rubenchik, A M; Barty, C P; Beach, R J; Erlandson, A C & Caird, J A
Partner: UNT Libraries Government Documents Department

Scaling to Ultra-High Intensities by High-Energy Petawatt Beam Combining

Description: The output pulse energy from a single-aperture high-energy laser amplifier (e.g. fusion lasers such as NIF and LMJ) are critically limited by a number of factors including optical damage, which places an upper bound on the operating fluence; parasitic gain, which limits together with manufacturing costs the maximum aperture size to {approx} 40-cm; and non-linear phase effects which limits the peak intensity. For 20-ns narrow band pulses down to transform-limited sub-picosecond pulses, these limiters combine to yield 10-kJ to 1-kJ maximum pulse energies with up to petawatt peak power. For example, the Advanced Radiographic Capability (ARC) project at NIF is designed to provide kilo-Joule pulses from 0.75-ps to 50-ps, with peak focused intensity above 10{sup 19} W/cm{sup 2}. Using such a high-energy petawatt (HEPW) beamline as a modular unit, they discuss large-scale architectures for coherently combining multiple HEPW pulses from independent apertures, called CAPE (Coherent Addition of Pulses for Energy), to significantly increase the peak achievable focused intensity. Importantly, the maximum intensity achievable with CAPE increases non-linearly. Clearly, the total integrated energy grows linearly with the number of apertures N used. However, as CAPE combines beams in the focal plane by increasing the angular convergence to focus (i.e. the f-number decreases), the foal spot diameter scales inversely with N. Hence the peak intensity scales as N{sup 2}. Using design estimates for the focal spot size and output pulse energy (limited by damage fluence on the final compressor gratings) versus compressed pulse duration in the ARC system, Figure 2 shows the scaled focal spot intensity and total energy for various CAPE configurations from 1,2,4, ..., up to 192 total beams. They see from the fixture that the peak intensity for event modest 8 to 16 beam combinations reaches the 10{sup 21} to 10{sup 22} W/cm{sup 2} regime. With greater number of ...
Date: June 23, 2006
Creator: Siders, C W; Jovanovic, I; Crane, J; Rushford, M; Lucianetti, A & Barty, C J
Partner: UNT Libraries Government Documents Department

Double-passed, high-energy quasi-phase-matched optical parametric chirped-pulse amplifier

Description: Quasi-phase-matched (QPM) optical parametric chirped-pulse amplification (OPCPA) in periodically poled materials such as periodically poled LiNbO{sub 3} (PPLN) and periodically poled KTiOPO{sub 4} (PPKTP) has been shown to exhibit advantages over the OPCPA in bulk nonlinear crystals. [GHH98, RPN02] The use of the maximum material nonlinear coefficient results in ultra-high gain with low pump peak power. Furthermore, propagation of signal, pump, and idler beams along one of the crystal principal axes eliminates the birefringent walk-off, reduces angular sensitivity, and improves beam quality. Relatively high level of parasitic parametric fluorescence (PF) in QPM OPCPA represents an impediment for simple, single-stage, high-gain amplification of optical pulses from nJ to mJ energies. PF in QPM is increased when compared to PF in critical phase matching in bulk crystals as a result of broader angular acceptance of the nonlinear conversion process. PF reduces prepulse contrast and conversion efficiency by competition with the signal pulse for pump pulse energy. Previous experiments with QPM OPCPA have thus resulted in pulse energies limited to tens of {mu}J. [JSE03] Optical parametric amplification of a narrowband signal pulse in PPKTP utilizing two pump beams has been demonstrated at a mJ-level, [FPK03] but the conversion efficiency has been limited by low energy extraction of pump pulse in the first pass of amplification. Additionally, narrow spectral bandwidth was the result of operation far from signal-idler degeneracy. Here we present a novel double-pass, broad-bandwidth QPM OPCPA. 1.2 mJ of amplified signal energy is produced in a single PPKTP crystal utilizing a single 24-mJ pump pulse from a commercial pump laser. [JFE05] To our knowledge, this is the highest energy demonstrated in QPM OPCPA. Double-passed QPM OPCPA exhibits high gain (> 3 x 10{sup 6}), high prepulse contrast (> 3 x 10{sup 7}), high energy stability (3% rms), and excellent beam quality. We ...
Date: September 19, 2005
Creator: Jovanovic, I; Forget, N; Brown, C G; Ebbers, C A; Blanc, C L & Barty, C J
Partner: UNT Libraries Government Documents Department

Diffraction grating eigenvector for translational and rotational motion

Description: Future energy scaling of high-energy chirped-pulse amplification systems will benefit from the capability to coherently tile diffraction gratings into larger apertures. Design and operation of a novel, accurate alignment diagnostics for coherently tiled diffraction gratings is required for successful implementation of this technique. An invariant diffraction direction and phase for special moves of a diffraction grating is discussed, allowing simplification in the design of the coherently tiled grating diagnostics. An analytical proof of the existence of a unique diffraction grating eigenvector for translational and rotational motion which conserves the diffraction direction and diffracted wave phase is presented.
Date: July 28, 2005
Creator: Rushford, M C; Molander, W A; Nissen, J D; Jovanovic, I; Britten, J A & Barty, C J
Partner: UNT Libraries Government Documents Department

Removal of Lattice Imperfections that Impact the Optical Quality of Ti:Sapphire using Advanced Magnetorheological Finishing Techniques

Description: Advanced magnetorheological finishing (MRF) techniques have been applied to Ti:sapphire crystals to compensate for sub-millimeter lattice distortions that occur during the crystal growing process. Precise optical corrections are made by imprinting topographical structure onto the crystal surfaces to cancel out the effects of the lattice distortion in the transmitted wavefront. This novel technique significantly improves the optical quality for crystals of this type and sets the stage for increasing the availability of high-quality large-aperture sapphire and Ti:sapphire optics in critical applications.
Date: February 26, 2008
Creator: Menapace, J A; Schaffers, K I; Bayramian, A J; Davis, P J; Ebbers, C A; Wolfe, J E et al.
Partner: UNT Libraries Government Documents Department

Fiber laser front end for high energy petawatt laser systems

Description: We are developing a fiber laser front end suitable for high energy petawatt laser systems on large glass lasers such as NIF. The front end includes generation of the pulses in a fiber mode-locked oscillator, amplification and pulse cleaning, stretching of the pulses to >3ns, dispersion trimming, timing, fiber transport of the pulses to the main laser bay and amplification of the pulses to an injection energy of 150 {micro}J. We will discuss current status of our work including data from packaged components. Design detail such as how the system addresses pulse contrast, dispersion trimming and pulse width adjustment and impact of B-integral on the pulse amplification will be discussed. A schematic of the fiber laser system we are constructing is shown in figure 1 below. A 40MHz packaged mode-locked fiber oscillator produces {approx}1nJ pulses which are phase locked to a 10MHz reference clock. These pulses are down selected to 100kHz and then amplified while still compressed. The amplified compressed pulses are sent through a non-linear polarization rotation based pulse cleaner to remove background amplified spontaneous emission (ASE). The pulses are then stretched by a chirped fiber Bragg grating (CFBG) and then sent through a splitter. The splitter splits the signal into two beams. (From this point we follow only one beam as the other follows an identical path.) The pulses are sent through a pulse tweaker that trims dispersion imbalances between the final large optics compressor and the CFBG. The pulse tweaker also permits the dispersion of the system to be adjusted for the purpose of controlling the final pulse width. Fine scale timing between the two beam lines can also be adjusted in the tweaker. A large mode area photonic crystal single polarization fiber is used to transport the pulses from the master oscillator room to the main ...
Date: June 15, 2006
Creator: Dawson, J W; Messerly, M J; Phan, H; Mitchell, S; Drobshoff, A; Beach, R J et al.
Partner: UNT Libraries Government Documents Department

Yttrium Calcium Oxyborate for high average power frequency doubling and OPCPA

Description: Significant progress has been achieved recently in the growth of Yttrium Calcium Oxyborate (YCOB) crystals. Boules have been grown capable of producing large aperture nonlinear crystal plates suitable for high average power frequency conversion or optical parametric chirped pulse amplification (OPCPA). With a large aperture (5.5 cm x 8.5 cm) YCOB crystal we have demonstrated a record 227 W of 523.5nm light (22.7 J/pulse, 10 Hz, 14 ns). We have also demonstrated the applicability of YCOB for 1053 nm OPCPA.
Date: June 20, 2006
Creator: Liao, Z M; Jovanovic, I; Ebbers, C A; Bayramian, A; Schaffers, K; Caird, J et al.
Partner: UNT Libraries Government Documents Department