18 Matching Results

Search Results

Advanced search parameters have been applied.

Assessment of the Impact of a New Guanidine Suppressor In NGS on F/H Laboratory Analyses For DWPF and Saltstone MCU Transfers

Description: Implementation of the Next Generation Solvent (NGS) in the Modular Caustic-Side Solvent Extraction Unit (MCU) will now proceed with a new suppressor compound, 1,2,3-tris(3,7-dimethyloctyl)guanidine (TiDG), replacing the originally planned suppressor for NGS, 1,3-dicyclohexyl-2-(11-methyldodecyl) guanidine (DCiTG). The Savannah River National Laboratory (SRNL) was tasked with evaluating the potential impact to F/H Laboratory analyses supporting the Defense Waste Processing Facility (DWPF) Waste Acceptance Criteria (WAC) used to qualify transfers of MCU Strip Effluent (SE) into the facility and the Saltstone WAC used to qualify transfers of Tank 50 containing Decontaminated Salt Solution (DSS) from MCU into Saltstone. This assigned scope is covered by a Task Technical and Quality Assurance Plan (TTQAP). Previous impact evaluations were conducted when the DCiTG suppressor was planned for NGS and concluded that there was no impact to either the determination of MCU SE pH nor the analysis of Isopar® L carryover in the MCU SE and DSS streams. SRNL reported on this series of cross-check studies between the SRNL and F/H Laboratories. The change in suppressor from DCiTG to TiDG in the NGS should not impact the measurement of Isopar® L or pH in SE or DSS necessary to satisfy DWPF and Saltstone WAC (Tank 50) criteria, respectively. A statistical study of the low bias observed in Isopar® L measurements in both SRNL and F/H Laboratories may be necessary now that the final NGS composition is fixed in order to quantify the low bias so that a proper correction can be applied to measurements critical to the DWPF and Saltstone WACs. Depending upon the final DWPF WAC requirement put in place for SE pH, it could become necessary to implement an alternative ICP-AES measurement of boron. The current blended solvent system testing in SRNL should address any impacts to Isopar® L carryover into either the DSS or ...
Date: April 29, 2013
Creator: Bannochie, C. J.
Partner: UNT Libraries Government Documents Department

Results For The First Quarter 2012 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminant Results

Description: This report details the chemical and radionuclide contaminant results for the characterization of the 2012 First Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC). Information from this characterization will be used by Waste Solidification Engineering (WSE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this memorandum: The concentrations of the reported chemical and radioactive contaminants were less than their respective WAC targets or limits unless noted; The reported detection limit for {sup 94}Nb is above the requested limit but below the estimated limit; {sup 247}Cm and {sup 249}Cf are above the requested limits. However, they are below the limits established; The reported detection limit for Norpar 13 is greater than the limit from the WAC; The reported detection limit for Isopar L is greater than the limit from WAC; Isopar L and Norpar 13 have limited solubility in aqueous solutions making it difficult to obtain consistent and reliable sub-samples; The values reported in this report are the concentrations in the sub-sample as detected by the instrument, however, the results may not accurately represent the concentrations of the analytes in Tank 50; The low insoluble solids content increases the measurement uncertainty for insoluble species.
Date: July 16, 2012
Creator: Bannochie, C. J.
Partner: UNT Libraries Government Documents Department

Results for the Third Quarter 2012 Tank 50 WAC Slurry Sample: Chemical and Radionuclide Contaminants

Description: This report details the chemical and radionuclide contaminant results for the characterization of the 2012 Third Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC). Information from this characterization will be used by Waste Solidification Engineering (WSE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.
Date: October 26, 2012
Creator: Bannochie, C. J.
Partner: UNT Libraries Government Documents Department

Tank 40 Final SB7b Chemical Characterization Results

Description: A sample of Sludge Batch 7b (SB7b) was taken from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). The SB7b WAPS sample was also analyzed for chemical composition including noble metals and fissile constituents. At the Savannah River National Laboratory (SRNL) the 3-L Tank 40 SB7b sample was transferred from the shipping container into a 4-L high density polyethylene bottle and solids were allowed to settle over the weekend. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 558 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO{sub 3}/HCl (aqua regia) in sealed Teflon� vessels and four with NaOH/Na{sub 2}O{sub 2} (alkali or peroxide fusion) using Zr crucibles. Two Analytical Reference Glass ? 1 (ARG-1) standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted to 1:100 mL with deionized water and submitted to Analytical Development (AD) for inductively coupled plasma ? atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma ? mass spectrometry (ICP-MS) analysis, atomic absorption spectroscopy (AA) for As and Se, and cold vapor atomic absorption spectroscopy (CV-AA) for Hg. Equivalent dilutions of the alkali fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB7b supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES, ion chromatography (IC), total base/free OH{sup -}/other base, total inorganic carbon/total organic carbon (TIC/TOC) analyses, and Cs-137 gamma scan. Weighted dilutions of slurry were submitted for IC, TIC/TOC, and total base/free OH-/other base analyses. Activities for U-233, U-235, ...
Date: November 6, 2012
Creator: Bannochie, C. J.
Partner: UNT Libraries Government Documents Department

Results For The First Quarter 2013 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminants

Description: This report details the chemical and radionuclide contaminant results for the characterization of the 2013 First Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC). Information from this characterization will be used by Waste Solidification Engineering (WSE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: SRR WAC targets or limits were met for all analyzed chemical and radioactive contaminates unless noted in this section; {sup 59}Ni, {sup 94}Nb, {sup 247}Cm, {sup 249}Cf, and {sup 251}Cf are above the requested SRR target concentrations. However, they are below the detection limits established by SRNL; Norpar 13 and Isopar L have higher detection limits compared with the Saltstone WAC. The data provided in this report is based upon the concentrations in the sub-sample, and due to the limited solubility in aqueous solution, may not represent the concentrations of the analytes in Tank 50; and, The low insoluble solids content increases the measurement uncertainty for insoluble species.
Date: May 14, 2013
Creator: Bannochie, C. J.
Partner: UNT Libraries Government Documents Department

Results For The Fourth Quarter 2012 Tank 50 WAC Slurry Sample: Chemical And Radionuclide Contaminants

Description: This report details the chemical and radionuclide contaminant results for the characterization of the 2012 Fourth Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC).Information from this characterization will be used by Waste Solidification Engineering (WSE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System. The following conclusions are drawn from the analytical results provided in this report: The concentration of the reported chemical and radioactive contaminants were less than their respective WAC Limits and Targets, unless noted in this section; Norpar 13 and Isopar L have higher detection limits compared with the Saltstone WAC. The data provided in this report is based upon the concentrations in the sub-sample, and due to the limited solubility in aqueous solution, may not represent the concentrations of the analytes in Tank 50; Diisooctyl adipate (or diisooctyl hexanedioate) and 5-methyl-3-hexanol, plasticizers, were measured at 1.30E+00 mg/L and 3.00E+00 mg/L, respectively, in one of two replicate measurements conducted on an at-depth sample. The organic analysis of the at-depth sample was conducted at the request of SRR. These analytes were below the detection limits for the surface sample; and, The low insoluble solids content increases the measurement uncertainty for insoluble species.
Date: February 5, 2013
Creator: Bannochie, C. J.
Partner: UNT Libraries Government Documents Department

Complexant Identification in Hanford Waste Simulant Sr/TRU Filtrate

Description: This project was designed to characterize the available multidentate ligand species and metal ion complexes of iron, strontium and manganese formed with the parent chelators, complexing agents and their fragment products. Complex identification was applied to AN-102 and AN-107 filtrate simulants for Hanford waste after an oxidation reaction with sodium permanganate to create a freshly precipitated manganese dioxide solid for adsorption of transuranic elements. Separation efficiency of different ligands was investigated based on the exchange capability of different ion exchange and ion exclusion analytical columns including Dionex IonPac AS-5A, AS-10, AS-11 and AS-6. The elution programs developed with different mobile phase concentrations were based on the change in the effective charge of the anionic species and therefore the retention on the stationary phase. In the present work, qualitative and quantitative assessments of multidentate ligands were investigated. Identification methods for the metal ion complexes responsible for solubilizing Fe, Mn and Sr were applied to aged and fresh simulant waste filtrates. Although concentration measurements of both fresh and 3-week aged filtrates showed that the degradation process occurs mainly due to the harsh chemical environment, it was found that the concentration of iron and manganese did not increase, within the error of the analytical measurements, after three weeks when compared with fresh filtrate.
Date: September 23, 2003
Creator: Bannochie, C.J.
Partner: UNT Libraries Government Documents Department

Technical bases for precipitate hydrolysis process operating parameters

Description: This report provides the experimental data and rationale in support of the operating parameters for precipitate hydrolysis specified in WSRC-RP-92737. The report is divided into two sections, the first dealing with lab-scale precipitate hydrolysis experimentation while the second part addresses large-scale runs conducted to demonstrate the revised operating parameters in the Precipitate Hydrolysis Experimental Facility (PHEF).
Date: October 5, 1992
Creator: Bannochie, C.J.
Partner: UNT Libraries Government Documents Department

Technical bases for precipitate hydrolysis process operating parameters

Description: This report provides the experimental data and rationale in support of the operating parameters for precipitate hydrolysis specified in WSRC-RP-92737. The report is divided into two sections, the first dealing with lab-scale precipitate hydrolysis experimentation while the second part addresses large-scale runs conducted to demonstrate the revised operating parameters in the Precipitate Hydrolysis Experimental Facility (PHEF).
Date: October 5, 1992
Creator: Bannochie, C. J.
Partner: UNT Libraries Government Documents Department

Examination Of Sulfur Measurements In DWPF Sludge Slurry And SRAT Product Materials

Description: Savannah River National Laboratory (SRNL) was asked to re-sample the received SB7b WAPS material for wt. % solids, perform an aqua regia digestion and analyze the digested material by inductively coupled plasma - atomic emission spectroscopy (ICP-AES), as well as re-examine the supernate by ICP-AES. The new analyses were requested in order to provide confidence that the initial analytical subsample was representative of the Tank 40 sample received and to replicate the S results obtained on the initial subsample collected. The ICP-AES analyses for S were examined with both axial and radial detection of the sulfur ICP-AES spectroscopic emission lines to ascertain if there was any significant difference in the reported results. The outcome of this second subsample of the Tank 40 WAPS material is the first subject of this report. After examination of the data from the new subsample of the SB7b WAPS material, a team of DWPF and SRNL staff looked for ways to address the question of whether there was in fact insoluble S that was not being accounted for by ion chromatography (IC) analysis. The question of how much S is reaching the melter was thought best addressed by examining a DWPF Slurry Mix Evaporator (SME) Product sample, but the significant dilution of sludge material, containing the S species in question, that results from frit addition was believed to add additional uncertainty to the S analysis of SME Product material. At the time of these discussions it was believed that all S present in a Sludge Receipt and Adjustment Tank (SRAT) Receipt sample would be converted to sulfate during the course of the SRAT cycle. A SRAT Product sample would not have the S dilution effect resulting from frit addition, and hence, it was decided that a DWPF SRAT Product sample would be obtained and submitted ...
Date: November 29, 2012
Creator: Bannochie, C. J. & Wiedenman, B. J.
Partner: UNT Libraries Government Documents Department

Technical bases for precipitate hydrolysis process operating parameters

Description: This report provides the experimental data and rationale in support of the operating parameters for tetraphenylborate precipitate hydrolysis specified in WSRC-RP-92-737. The report is divided into two sections, the first dealing with lab-scale precipitate hydrolysis experimentation while the second part addresses large-scale runs conducted to demonstrate the revised operating parameters in the Precipitate Hydrolysis Experimental Facility (PHEF). The program was in conjunction with reducing the nitrite ion level in DWPF feed.
Date: November 9, 1992
Creator: Bannochie, C.J. & Lambert, D.P.
Partner: UNT Libraries Government Documents Department

Technical bases for precipitate hydrolysis process operating parameters. Revision 1

Description: This report provides the experimental data and rationale in support of the operating parameters for tetraphenylborate precipitate hydrolysis specified in WSRC-RP-92-737. The report is divided into two sections, the first dealing with lab-scale precipitate hydrolysis experimentation while the second part addresses large-scale runs conducted to demonstrate the revised operating parameters in the Precipitate Hydrolysis Experimental Facility (PHEF). The program was in conjunction with reducing the nitrite ion level in DWPF feed.
Date: November 9, 1992
Creator: Bannochie, C. J. & Lambert, D. P.
Partner: UNT Libraries Government Documents Department

Investigation of Sludge Batch 3 (Macrobatch 4) Glass Sample Anomalous Behavior

Description: Two Defense Waste Processing Facility (DWPF) glass samples from Sludge Batch 3 (SB3) (Macrobatch 4) were received by the Savannah River National Laboratory (SRNL) on February 23, 2005. One sample, S02244, was designated for the Product Consistency Test (PCT) and elemental and radionuclide analyses. The second sample, S02247, was designated for archival storage. The samples were pulled from the melter pour stream during the feeding of Melter Feed Tank (MFT) Batch 308 and therefore roughly correspond to feed from Slurry Mix Evaporator (SME) Batches 306-308. During the course of preparing sample S02244 for PCT and other analyses two observations were made which were characterized as ''unusual'' or anomalous behavior relative to historical observations of glasses prepared for the PCT. These observations ultimately led to a series of scoping tests in order to determine more about the nature of the behavior and possible mechanisms. The first observation was the behavior of the ground glass fraction (-100 +200 mesh) for PCT analysis when contacted with deionized water during the washing phase of the PCT procedure. The behavior was analogous to that of an organic compound in the presence of water: clumping, floating on the water surface, and crawling up the beaker walls. In other words, the glass sample did not ''wet'' normally, displaying a hydrophobic behavior in water. This had never been seen before in 18 years SRNL PCT tests on either radioactive or non-radioactive glasses. Typical glass behavior is largely to settle to the bottom of the water filled beaker, though there may be suspended fines which result in some cloudiness to the wash water. The typical appearance is analogous to wetting sand. The second observation was the presence of faint black rings at the initial and final solution levels in the Teflon vessels used for the mixed acid digestion of ...
Date: August 15, 2005
Creator: Bannochie, C. J.; Bibler, N. E. & Peeler, D. K.
Partner: UNT Libraries Government Documents Department

Analytical Results of DWPF Glass Sample Taken During Pouring of Canister S01913: Summary Report

Description: In order to comply with the Waste Acceptance Product Specifications in Sludge Batch 2, Savannah River National Laboratory personnel performed characterization analysis of the Defense Waste Processing Facility (DWPF) radioactive glass pour stream sample taken during filling of Canister S01913. This report summarizes results of the characterization that indicate that the DWPF produced glass is significantly more durable than the Environmental Assessment glass. Results and further details are documented in the report, ''Analytical Results of DWPF Glass Sample Taken during Pouring of Canister S01913'', WSRC-TR-2004-00316, Rev. 2, (2005).
Date: October 1, 2005
Creator: Cozzi, A. D.; Bibler, N.E. & Bannochie, C. J.
Partner: UNT Libraries Government Documents Department

Plutonium Immobilization Material Characterization: Milestone 1 Report - Initiate Design of Prototype Material Characterization System

Description: The objective of this task is to analyze impure oxide materials exiting from front-end processing prior to storage for feed blending. There are three goals to be accomplished with this task: reduce reblending (currently projected at 7% with an optimized ordering of the incoming material streams), determine if impure feed prep operations are performing adequately, and reduce plant operating costs by replacing wet prep elemental analyses whether conducted in the immobilization facility or in existing laboratories. An additional potential application is the analysis of blended oxide prior to first-stage UO{sub 2} and precursor addition.
Date: June 1, 1999
Creator: Bannochie, C.J.
Partner: UNT Libraries Government Documents Department

Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes

Description: Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.
Date: October 22, 2012
Creator: Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A. et al.
Partner: UNT Libraries Government Documents Department

Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

Description: The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is amorphous, macro-encapsulates the granules, and ...
Date: August 21, 2013
Creator: Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E. et al.
Partner: UNT Libraries Government Documents Department

Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105, Tank AN-103, And AZ-101/102) By Fluidized Bed Steam Reformation (FBSR)

Description: Fluidized Bed Steam Reforming (FBSR) is a robust technology for the immobilization of a wide variety of radioactive wastes. Applications have been tested at the pilot scale for the high sodium, sulfate, halide, organic and nitrate wastes at the Hanford site, the Idaho National Laboratory (INL), and the Savannah River Site (SRS). Due to the moderate processing temperatures, halides, sulfates, and technetium are retained in mineral phases of the feldspathoid family (nepheline, sodalite, nosean, carnegieite, etc). The feldspathoid minerals bind the contaminants such as Tc-99 in cage (sodalite, nosean) or ring (nepheline) structures to surrounding aluminosilicate tetrahedra in the feldspathoid structures. The granular FBSR mineral waste form that is produced has a comparable durability to LAW glass based on the short term PCT testing in this study, the INL studies, SPFT and PUF testing from previous studies as given in the columns in Table 1-3 that represent the various durability tests. Monolithing of the granular product was shown to be feasible in a separate study. Macro-encapsulating the granular product provides a decrease in leaching compared to the FBSR granular product when the geopolymer is correctly formulated.
Date: September 18, 2013
Creator: Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E. et al.
Partner: UNT Libraries Government Documents Department