19 Matching Results

Search Results

Advanced search parameters have been applied.

NOVEL CORROSION SENSOR FOR VISION 21 SYSTEMS

Description: Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the metal loss caused by chemical reactions on surfaces exposed to the combustion environment. Such corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indication of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall objective of this proposed project is to develop a technology for on-line corrosion monitoring based on a new concept. This report describes the initial results from the first-year effort of the three-year study that include laboratory development and experiment, and pilot combustor testing.
Date: December 1, 2004
Creator: Ban, Heng
Partner: UNT Libraries Government Documents Department

Novel Corrosion Sensor for Vision 21 Systems

Description: Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the metal loss caused by chemical reactions on surfaces exposed to the combustion environment. Such corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indication of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall objective of this project is to develop a technology for on-line corrosion monitoring based on a new concept. This objective is to be achieved by a laboratory development of the sensor and instrumentation, testing of the measurement system in a laboratory muffle furnace, and eventually testing the system in a coal-fired furnace. The initial plan for testing at the coal-fired pilot-scale furnace was replaced by testing in a power plant, because the operation condition at the power plant is continuous and more stable. The first two-year effort was completed with the successful development sensor and measurement system, and successful testing in a muffle furnace. Because of the potential high cost in sensor fabrication, a different type of sensor was used and tested in a power plant burning eastern bituminous coals. This report summarize the experiences and results of the first two years of the three-year project, which include laboratory development and testing, and experiences and results ...
Date: December 1, 2005
Creator: Ban, Heng
Partner: UNT Libraries Government Documents Department

A NOVEL SENSOR AND MEASUREMENT SYSTEM FOR FIRESIDE CORROSION MONITORING IN COAL-FIRED BOILERS

Description: Fireside corrosion in coal-fired power plants is a major obstacle to increase the overall efficiency for power producers. The increased use of opportunity fuels and low emission combustion modes have aggravated the corrosion on boiler tube walls in power plants. Corrosion-induced equipment failure could lead to catastrophic damage and inflict significant loss of production and cost for repair. Monitoring fireside corrosion in a reliable and timely manner can provide significant benefits to the plant operation. Current corrosion inspection and measurement are typically performed during scheduled maintenance outages, which is often after the damage is done. In the past, there have been many attempts to develop real time continuous corrosion monitoring technologies. However, there is still no short-term, online corrosion monitoring system commercially available for fireside corrosion to date due to the extremely harsh combustion environment. This report describes the results of a laboratory feasibility study on the development effort of a novel sensor for on-line fireside corrosion monitoring. A novel sensor principle and thin-film technologies were employed in the corrosion sensor design and fabrication. The sensor and the measurement system were experimentally studied using laboratory muffle furnaces. The results indicated that an accurate measure of corrosion rate could be made with high sensitivity using the new sensor. The investigation proved the feasibility of the concept and demonstrated the sensor design, sensor fabrication, and measurement instrumentation at the laboratory scale. An uncertainty analysis of the measurement system was also performed to provide a basis for further improvement of the system for future pilot or full scale testing.
Date: March 1, 2003
Creator: Ban, Heng & Li, Zuoping
Partner: UNT Libraries Government Documents Department

PREFERENTIAL RECYCLING/REJECTION IN CFBC/FBC SYSTEMS USING TRIBOELECTROSTATIC SEPARATION

Description: Circulating Fluidized Bed Combustion (CFBC) and Fluidized Bed Combustion (FBC) with recirculation are widely used technologies in the US for power generation. They have the advantage of fuel flexibility, and low NO{sub x} and SO{sub x} emissions. Typically, as partially combusted fuel is circulated in the system, only a split stream of this circulating stream is rejected, with the remainder recycled to the combustor. As a consequence, there is unburned carbon and partially used and valuable calcium hydroxide in the reject stream. If these useful materials in the reject stream can be recovered and sent back to the combustor, the efficiency of the system will be increased significantly and the equivalent emissions will be lower. This project studies an innovative concept to incorporate triboelectric separation into CFBC/FBC systems in order to preferentially split its recycle/reject streams based on material compositions of the particles. The objective is to answer whether useful constituents, like carbon, calcium carbonate and calcium hydroxide or oxide, can be selectively separated from combustion ash at elevated temperatures. Laboratory experimental studies are performed at temperatures from 25 C to 210 C,the data from which are presented in the form of recovery curves. These curves present quality-versus-quantity information useful for predicting the efficacy of triboelectric separation as applied to CFBC/FBC byproduct recycling and/or rejection.
Date: December 1, 2004
Creator: Ban, Heng & Stencel, John M.
Partner: UNT Libraries Government Documents Department

Novel Corrosion Sensor for Vision 21 Systems

Description: Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indication of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall goal of this project is to develop a technology for on-line fireside corrosion monitoring. This objective is achieved by the laboratory development of sensors and instrumentation, testing them in a laboratory muffle furnace, and eventually testing the system in a coal-fired furnace. This project successfully developed two types of sensors and measurement systems, and successful tested them in a muffle furnace in the laboratory. The capacitance sensor had a high fabrication cost and might be more appropriate in other applications. The low-cost resistance sensor was tested in a power plant burning eastern bituminous coals. The results show that the fireside corrosion measurement system can be used to determine the corrosion rate at waterwall and superheater locations. Electron microscope analysis of the corroded sensor surface provided detailed picture of the corrosion process.
Date: March 31, 2007
Creator: Ban, Heng & Soni, Bharat
Partner: UNT Libraries Government Documents Department

Preferential recycling/rejection in CFBC/FBC systems using triboelectrostatic separation

Description: Circulating Fluidized Bed Combustion (CFBC) and Fluidized Bed Combustion (FBC) with recirculation are widely used technologies in the US for power generation. They have the advantage of fuel flexibility, and low NO{sub x} and SO{sub x} emissions. Typically, as partially combusted fuel is circulated in the system, only a split stream of this circulating stream is rejected, with remainder recycled to the combustor. As a consequence, there is unburned carbon and partially used, valuable, calcium hydroxide in the reject stream. If these useful materials in the reject stream can be recovered and sent back to the combustor, the efficiency of the system will be increased significantly and the equivalent emissions will be lower. This project studies an innovative concept to incorporate triboelectric separation into CFBC/FBC systems in order to preferentially split its recycle/reject streams based on material compositions of the particles. The objective is to answer whether useful constituents, like carbon, calcium carbonate and calcium hydroxide or oxide, can be selectively separated from combustion ash at elevated temperatures. Laboratory experimental studies are performed at temperatures from 25 C to 210 C, the data from which are presented in the form of recovery curves. These curves present quality-versus-quantity information useful for predicting the efficacy of triboelectric separation as applied to CFBC/FBC byproduct recycling and/or rejection.
Date: May 25, 2000
Creator: Ban, Heng & Stencel, J.M.
Partner: UNT Libraries Government Documents Department

Preferential recycling/rejection in CFBC/FBC systems using triboelectrostatic separation

Description: Circulating Fluidized Bed Combustion (CFBC) and Fluidized Bed Combustion (FBC) with recirculation are widely used technologies in the US for power generation. They have the advantage of fuel flexibility, and low NO{sub x} and SO{sub x} emissions. Typically, as partially combusted fuel is circulated in the system, only a split stream of this circulating stream is rejected, with remainder recycled to the combustor. As a consequence, there is unburned carbon and partially used, valuable, calcium hydroxide in the reject stream. If these useful materials in the reject stream can be recovered and sent back to the combustor, the efficiency of the system will be increased significantly and the equivalent emissions will be lower. This project studies an innovative concept to incorporate triboelectric separation into CFBC/FBC systems in order to preferentially split its recycle/reject streams based on material compositions of the particles. The objective is to answer whether useful constituents, like carbon, calcium carbonate and calcium hydroxide or oxide, can be selectively separated from combustion ash at elevated temperatures. Laboratory experimental studies are performed at temperatures from 25 C to 210 C, the data from which are presented in the form of recovery curves. These curves present quality-versus-quantity information useful for predicting the efficacy of triboelectric separation as applied to CFBC/FBC byproduct recycling and/or rejection.
Date: May 25, 2000
Creator: Ban, Heng & Stencel, J.M.
Partner: UNT Libraries Government Documents Department

Preferential recycling/rejection in CFBC/FBC systems using triboelectrostatic separation

Description: Circulating Fluidized Bed Combustion (CFBC) and Fluidized Bed Combustion (FBC) with recirculation are widely used technologies in the US for power generation. They have the advantage of fuel flexibility, and low NO{sub x} and SO{sub x} emissions. Typically, as partially combusted fuel is circulated in the system, only a split stream of this circulating stream is rejected, with remainder recycled to the combustor. As a consequence, there is unburned carbon and partially used, valuable, calcium hydroxide in the reject stream. If these useful materials in the reject stream can be recovered and sent back to the combustor, the efficiency of the system will be increased significantly and the equivalent emissions will be lower. This project studies an innovative concept to incorporate triboelectric separation into CFBC/FBC systems in order to preferentially split its recycle/reject streams based on material compositions of the particles. The objective is to answer whether useful constituents, like carbon, calcium carbonate and calcium hydroxide or oxide, can be selectively separated from combustion ash at elevated temperatures. Laboratory experimental studies are performed at temperatures from 25 C to 210 C, the data from which are presented in the form of recovery curves. These curves present quality-versus-quantity information useful for predicting the efficacy of triboelectric separation as applied to CFBC/FBC byproduct recycling and/or rejection.
Date: May 25, 2000
Creator: Ban, Heng & Stencel, J.M.
Partner: UNT Libraries Government Documents Department

VALIDATION OF A THERMAL CONDUCTIVITY MEASUREMENT SYSTEM FOR FUEL COMPACTS

Description: A high temperature guarded-comparative-longitudinal heat flow measurement system has been built to measure the thermal conductivity of a composite nuclear fuel compact. It is a steady-state measurement device designed to operate over a temperature range of 300 K to 1200 K. No existing apparatus is currently available for obtaining the thermal conductivity of the composite fuel in a non-destructive manner due to the compact’s unique geometry and composite nature. The current system design has been adapted from ASTM E 1225. As a way to simplify the design and operation of the system, it uses a unique radiative heat sink to conduct heat away from the sample column. A finite element analysis was performed on the measurement system to analyze the associated error for various operating conditions. Optimal operational conditions have been discovered through this analysis and results are presented. Several materials have been measured by the system and results are presented for stainless steel 304, inconel 625, and 99.95% pure iron covering a range of thermal conductivities of 10 W/m*K to 70 W/m*K. A comparison of the results has been made to data from existing literature.
Date: March 1, 2011
Creator: Phillips, Jeff; Jensen, Colby; Xing, Changhu & Ban, Heng
Partner: UNT Libraries Government Documents Department

Optical Fiber Technique for In-Reactor Mechanical Properties Measurement

Description: In-reactor measurement of material properties is required for a better understanding of radiation effects on materials. We present an optical fiber based technique for measuring changes in elastic properties which involves exciting and measuring flexural vibrations in a thin cantilever beam. By exciting the beam and measuring the natural frequency, changes in the modulus of elasticity can be monitored. The technique is demonstrated by monitoring the elastic property changes of a beam fabricated from copper, as the copper undergoes recrystallization at elevated temperature.
Date: July 1, 2012
Creator: Schley, Robert S.; Hua, Zilong; Hurley, David H. & Ban, Heng
Partner: UNT Libraries Government Documents Department

THERMAL PREDICTIONS OF NEW COMPOSITE MATERIAL DURING INPILE TESTING

Description: An inpile experiment is currently underway wherein specimens comprised of a newly developed material are being irradiated at Idaho National Laboratory's Advanced Test Reactor (ATR) in conjunction with Utah State University under the auspices of the ATR National Scientific User Facility. This paper provides the thermophysical properties of this new material measured prior to irradiation. After the irradiation campaign is complete, the thermophysical properties of the specimens will be measured and compared to the preirradiation values. A finite-element model was constructed to predict bounding specimen temperatures during irradiation. Results from the thermal hydraulic modeling, including the steady-state temperatures of the specimens within sealed capsules, are presented. After the irradiation campaign is completed, best-estimate thermal predictions will be performed for the individual specimens using the actual as-run irradiation power levels.
Date: September 1, 2011
Creator: Guillen, Donna Post; Swank, W. David; Ban, Heng; Harris, Kurt & Zabriskie, Adam
Partner: UNT Libraries Government Documents Department

An Electromotive Force Measurement System for Alloy Fuels

Description: The development of advanced nuclear fuels requires a better understanding of the transmutation and micro-structural evolution of the materials. Alloy fuels have the advantage of high thermal conductivity and improved characteristics in fuel-cladding chemical reaction. However, information on thermodynamic and thermophysical properties is limited. The objective of this project is to design and build an experimental system to measure the thermodynamic properties of solid materials from which the understanding of their phase change can be determined. The apparatus was used to measure the electromotive force (EMF) of several materials in order to calibrate and test the system. The EMF of chromel was measured from 100°C to 800°C and compared with theoretical values. Additionally, the EMF measurement of Ni-Fe alloy was performed and compared with the Ni-Fe phase diagram. The prototype system is to be modified eventually and used in a radioactive hot-cell in the future.
Date: November 1, 2010
Creator: Xing, Changhu; Jensen, Colby; Ban, Heng; Mariani, Robert & Kennedy, J. Rory
Partner: UNT Libraries Government Documents Department

Hot Wire Needle Probe for In-Pile Thermal Conductivity Detection

Description: Thermal conductivity is a key property of interest for both nuclear fuel and structural materials, and must be known for proper design, test, and application of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are measured out-of-pile by Post Irradiated Examination (PIE) using a “cook and look” approach in hot-cells. Repeatedly removing samples from a test reactor to make out-of-pile measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state at the time each measurement is made. There are also limited thermophysical property data for advanced fuels. Such data are needed for simulation design codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses advancements from Idaho National Laboratory (INL) / Utah State University (USU) examinations, including background information, governing equations, experimental setup, detailed results, and conclusions for both a steady state and a transient method. Experimental findings of the INL/USU steady state method examinations help to better understand limitations and benefits of two-thermocouple methods, where laboratory results can be extrapolated to in-pile applications. Additionally, results from the transient method offer the immediate potential for in-pile application, as the method reduces the impact on the sample from only a small centerline sensor, measurement times (e.g., only minutes for complete transient tests compared to hours or days for steady state tests), and uncertainties from estimating difficult parameters such as, in-pile fuel ...
Date: November 1, 2001
Creator: Daw, Joshua; Rempe, Joy; Condie, Keith; Knudson, Darrell; Wilkins, S. Curtis; Fox, Brandon S. et al.
Partner: UNT Libraries Government Documents Department

DEVELOPMENT OF AN IN-PILE TECHNIQUE FOR THERMAL CONDUCTIVITY MEASUREMENT

Description: Thermophysical properties of advanced fuels and materials during irradiation must be known prior to their use in existing, advanced, or next generation reactors. Fuel thermal conductivity is one of the most important properties for predicting fuel performance and reactor safety. This paper discusses a joint Utah State University (USU)/Idaho National Laboratory (INL) project to investigate an in-pile fuel thermal conductivity measurement technique using a surrogate fuel rod. The method used a surrogate fuel rod with Joule heating to simulate volumetric heat generation as a proof-of-concept test in-pile application. Carbon structural foam, CFOAM®, a product of Touchtone Research Laboratory was chosen as the surrogate material because of the variable electrical and thermal properties upon fabrication. To stay within the surrogate fuel rod requirements, electrical and thermal properties were tailored by Touchtone Research Laboratory to match required values. This paper describes are the techniques used for quantifying thermal conductivity. A description of the test setup and preliminary results are presented. Two thermocouples are inserted into a 1-inch diameter, 6-inch long rod of CFOAM® at known locations. Knowing the applied volumetric heat to the rod by electrical resistance heating, the thermal conductivity can be calculated. Sensitivities of this measurement can also found by analysis and testing of different configurations of the sample setup. Verification of thermal conductivity is found by measuring the thermal properties of the CFOAM® using different methods. Thermal properties including thermal conductivity, specific heat capacity, and expansion coefficient of two types of CFOAM®, CFOAM20 and CFOAM25, were characterized using standard measurement techniques, such as laser flash, differential scanning calorimetry, and pushrod dilatometry.
Date: April 1, 2009
Creator: Fox, Brandon; Ban, Heng; Rempe, Joy L.; Daw, Joshua E.; Condie, Keith G. & Knudson, Darrell L.
Partner: UNT Libraries Government Documents Department

In-Pile Thermal Conductivity Measurement Method for Nuclear Fuels

Description: Thermophysical properties of advanced nuclear fuels and materials during irradiation must be known prior to their use in existing, advanced, or next generation reactors. Thermal conductivity is one of the most important properties for predicting fuel and material performance. A joint Utah State University (USU) / Idaho National Laboratory (INL) project, which is being conducted with assistance from the Institute for Energy Technology at the Norway Halden Reactor Project, is investigating in-pile fuel thermal conductivity measurement methods. This paper focuses on one of these methods – a multiple thermocouple method. This two-thermocouple method uses a surrogate fuel rod with Joule heating to simulate volumetric heat generation to gain insights about in-pile detection of thermal conductivity. Preliminary results indicated that this method can measure thermal conductivity over a specific temperature range. This paper reports the thermal conductivity values obtained by this technique and compares these values with thermal property data obtained from standard thermal property measurement techniques available at INL’s High Test Temperature Laboratory. Experimental results and material properties data are also compared to finite element analysis results.
Date: August 1, 2009
Creator: Rempe, Joy L.; Fox, Brandon; Ban, Heng; Daw, Joshua E.; Knudson, Darrell L. & Condie, Keith G.
Partner: UNT Libraries Government Documents Department

In-Pile Experiment of a New Hafnium Aluminide Composite Material to Enable Fast Neutron Testing in the Advanced Test Reactor

Description: A new hafnium aluminide composite material is being developed as a key component in a Boosted Fast Flux Loop (BFFL) system designed to provide fast neutron flux test capability in the Advanced Test Reactor. An absorber block comprised of hafnium aluminide (Al3Hf) particles (~23% by volume) dispersed in an aluminum matrix can absorb thermal neutrons and transfer heat from the experiment to pressurized water cooling channels. However, the thermophysical properties, such as thermal conductivity, of this material and the effect of irradiation are not known. This paper describes the design of an in-pile experiment to obtain such data to enable design and optimization of the BFFL neutron filter.
Date: June 1, 2010
Creator: Guillen, Donna Post; Porter, Douglas L.; Parry, James R. & Ban, Heng
Partner: UNT Libraries Government Documents Department

Fabrication and Characterization of a Conduction Cooled Thermal Neutron Filter

Description: Installation of a conduction cooled thermal (low-energy) neutron filter in an existing domestic test reactor would provide the U.S. the capability to test new reactor fuels and materials for advanced fast (high-energy) reactor concepts. A composite consisting of Al3Hf-Al has been proposed for the neutron filter due to both the neutron filtering properties of hafnium and the conducting capabilities of aluminum. Knowledge of the thermal conductivity of the Al3Hf-Al composite is essential for the design of the filtering system. The present objectives are to identify a suitable fabrication technique and to measure the thermophysical properties of the Al3Hf intermetallic, which has not been done previous to this study. A centrifugal casting method was used to prepare samples of Al3Hf. X-ray diffraction and Rietveld analysis were conducted to determine the structural make-up of each of the samples. Thermophysical properties were measured as follows: specific heat by a differential scanning calorimeter (DSC), thermal diffusivity by a laser flash thermal diffusivity measuring system, thermal expansion by a dilatometer, and thermal conductivity was calculated based on the previous measurements. All measurements were acquired over a temperature range of 90°C - 375°C with some measurements outside these bounds. The average thermal conductivity of the intermetallic Al3Hf (~7 at.% Hf) was found to be ~ 41 W/m-K for the given temperature range. This information fills a knowledge gap in the thermophysical properties of the intermetallic Al3Hf with the specified percentage of hafnium. A model designed to predict composite properties was used to calculate a thermal conductivity of ~177 W/m-K for an Al3Hf-Al composite with 23 vol% Al3Hf. This calculation was based upon the average thermal conductivity of Al3Hf over the specified temperature range.
Date: June 1, 2010
Creator: Wampler, Heather; Gerth, Adam; Ban, Heng; Guillen, Donna Post; Porter, Douglas & Papesch, Cynthia
Partner: UNT Libraries Government Documents Department

New Sensors for the Advanced Test Reactor National Scientific User Facility

Description: A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the selection strategy of what instrumentation is needed, and the program generated for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available to users of the ATR NSUF with data from irradiation tests using these sensors. In addition, progress is reported on current research efforts to provide users advanced methods for detecting temperature, fuel thermal conductivity, and changes in sample geometry.
Date: June 1, 2009
Creator: Rempe, Joy L.; Knudson, Darrell L.; Condie, Keith G.; Daw, Joshua E.; Ban, Heng; Fox, Brandon et al.
Partner: UNT Libraries Government Documents Department

Oxidation of Mercury in Products of Coal Combustion

Description: Laboratory measurements of mercury oxidation during selective catalytic reduction (SCR) of nitric oxide, simulation of pilot-scale measurements of mercury oxidation and adsorption by unburned carbon and fly ash, and synthesis of new materials for simultaneous oxidation and adsorption of mercury, were performed in support of the development of technology for control of mercury emissions from coal-fired boilers and furnaces. Conversion of gas-phase mercury from the elemental state to water-soluble oxidized form (HgCl{sub 2}) enables removal of mercury during wet flue gas desulfurization. The increase in mercury oxidation in a monolithic V{sub 2}O{sub 5}-WO{sub 3}/TiO{sub 2} SCR catalyst with increasing HCl at low levels of HCl (< 10 ppmv) and decrease in mercury oxidation with increasing NH{sub 3}/NO ratio during SCR were consistent with results of previous work by others. The most significant finding of the present work was the inhibition of mercury oxidation in the presence of CO during SCR of NO at low levels of HCl. In the presence of 2 ppmv HCl, expected in combustion products from some Powder River Basin coals, an increase in CO from 0 to 50 ppmv reduced the extent of mercury oxidation from 24 {+-} 3 to 1 {+-} 4%. Further increase in CO to 100 ppmv completely suppressed mercury oxidation. In the presence of 11-12 ppmv HCl, increasing CO from 0 to {approx}120 ppmv reduced mercury oxidation from {approx}70% to 50%. Conversion of SO{sub 2} to sulfate also decreased with increasing NH{sub 3}/NO ratio, but the effects of HCl and CO in flue gas on SO{sub 2} oxidation were unclear. Oxidation and adsorption of mercury by unburned carbon and fly ash enables mercury removal in a particulate control device. A chemical kinetic mechanism consisting of nine homogeneous and heterogeneous reactions for mercury oxidation and removal was developed to interpret pilot-scale measurements of ...
Date: September 14, 2009
Creator: Walsh, Peter; Tong, Giang; Bhopatkar, Neeles; Gale, Thomas; Blankenship, George; Ingram, Conrad et al.
Partner: UNT Libraries Government Documents Department