9 Matching Results

Search Results

Advanced search parameters have been applied.

MULTISCALE THERMAL-INFRARED MEASUREMENTS OF THE MAUNA LOA CALDERA, HAWAII

Description: Until recently, most thermal infrared measurements of natural scenes have been made at disparate scales, typically 10{sup {minus}3}-10{sup {minus}2} m (spectra) and 10{sup 2}-10{sup 3} m (satellite images), with occasional airborne images (10{sup 1} m) filling the gap. Temperature and emissivity fields are spatially heterogeneous over a similar range of scales, depending on scene composition. A common problem for the land surface, therefore, has been relating field spectral and temperature measurements to satellite data, yet in many cases this is necessary if satellite data are to be interpreted to yield meaningful information about the land surface. Recently, three new satellites with thermal imaging capability at the 10{sup 1}-10{sup 2} m scale have been launched: MTI, TERRA, and Landsat 7. MTI acquires multispectral images in the mid-infrared (3-5{micro}m) and longwave infrared (8-10{micro}m) with 20m resolution. ASTER and MODIS aboard TERRA acquire multispectral longwave images at 90m and 500-1000m, respectively, and MODIS also acquires multispectral mid-infrared images. Landsat 7 acquires broadband longwave images at 60m. As part of an experiment to validate the temperature and thermal emissivity values calculated from MTI and ASTER images, we have targeted the summit region of Mauna Loa for field characterization and near-simultaneous satellite imaging, both on daytime and nighttime overpasses, and compare the results to previously acquired 10{sup {minus}1} m airborne images, ground-level multispectral FLIR images, and the field spectra. Mauna Loa was chosen in large part because the 4x6km summit caldera, flooded with fresh basalt in 1984, appears to be spectrally homogeneous at scales between 10{sup {minus}1} and 10{sup 2} m, facilitating the comparison of sensed temperature. The validation results suggest that, with careful atmospheric compensation, it is possible to match ground measurements with measurements from space, and to use the Mauna Loa validation site for cross-comparison of thermal infrared sensors and temperature/emissivity extraction algorithms.
Date: March 1, 2001
Creator: BALICK, L.; GILLESPIE, A. & AL, ET
Partner: UNT Libraries Government Documents Department

MULTISPECTRAL THERMAL IMAGER SCIENCE, DATA PRODUCT AND GROUND DATA PROCESSING OVERVIEW.

Description: The mission of the Multispectral Thermal Imager (MTI) satellite is to demonstrate the efficacy of highly accurate multispectral imaging for passive characterization of urban and industrial areas, as well as sites of environmental interest. The satellite makes top-of-atmosphere radiance measurements that are subsequently processed into estimates of surface properties such as vegetation health, temperatures, material composition and others. The system also provides simultaneous data for atmospheric characterization at high spatial resolution. To utilize these data the MTI science program has several coordinated components, including modeling, comprehensive ground-truth measurements, image acquisition planning, data processing and data analysis and interpretation . Algorithms have been developed to retrieve a multitude of physical quantities and these algorithms are integrated in a processing pipeline architecture that emphasizes automation, flexibility and programmability. This paper describes the MTI data products and ground processing, as well as the ''how to'' aspects of starting a data center from scratch.
Date: April 1, 2001
Creator: SZYMANSKI, J.; BALICK, L. & AL, ET
Partner: UNT Libraries Government Documents Department

Measurement of directional thermal infrared emissivity of vegetation and soils

Description: A new method has been developed for measuring directional thermal emissivity as a function of view angle for plant canopies and soils using two infrared thermometers each sensitive to a different wavelength band. By calibrating the two infrared thermometers to 0.1C consistency, canopy directional emissivity can be estimated with typical errors less than 0.005 in the 8--14 um wavelength band, depending on clarity of the sky and corrections for CO{sub 2} absorption by the atmosphere. A theoretical justification for the method is developed along with an error analysis. Laboratory measurements were used to develop corrections for CO{sub 2}, absorption and a field calibration method is used to obtain the necessary 0.1C consistency for relatively low cost infrared thermometers. The emissivity of alfalfa (LAI=2.5) and corn (LAI=3.2) was near 0.995 and independent of view angle. Individual corn leaves had an emissivity of 0.97. A wheat (LAI=3.0) canopy had an emissivity of 0.985 at nadir and 0.975 at 75 degree view angle. The canopy emissivity values tend to be higher than values in the literature, and are useful for converting infrared thermometer measurements to kinetic temperature and interpreting satellite thermal observations.
Date: October 1, 1995
Creator: Norman, J.M. & Balick, L.K.
Partner: UNT Libraries Government Documents Department

Image processing technology

Description: This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The primary objective of this project was to advance image processing and visualization technologies for environmental characterization. This was effected by developing and implementing analyses of remote sensing data from satellite and airborne platforms, and demonstrating their effectiveness in visualization of environmental problems. Many sources of information were integrated as appropriate using geographic information systems.
Date: July 1, 1996
Creator: Van Eeckhout, E.; Pope, P. & Balick, L.
Partner: UNT Libraries Government Documents Department

Results of the remote sensing feasibility study for the uranium hexafluoride storage cylinder yard program

Description: The US DOE manages the safe storage of approximately 650,000 tons of depleted uranium hexafluoride remaining from the Cold War. This slightly radioactive, but chemically active, material is contained in more than 46,000 steel storage cylinders that are located at Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. Some of the cylinders are more than 40 years old, and approximately 17,500 are considered problem cylinders because their physical integrity is questionable. These cylinders require an annual visual inspection. The remainder of the 46,000-plus cylinders must be visually inspected every four years. Currently, the cylinder inspection program is extremely labor intensive. Because these inspections are accomplished visually, they may not be effective in the early detection of leaking cylinders. The inspection program requires approximately 12--14 full-time-equivalent (FTE) employees. At the cost of approximately $125K per FTE, this translates to $1,500K per annum just for cylinder inspection. As part of the technology-development portion of the DOE Cylinder Management Program, the DOE Office of Facility Management requested the Remote Sensing Laboratory (RSL) to evaluate remote sensing techniques that have potential to increase the effectiveness of the inspection program and, at the same time, reduce inspection costs and personnel radiation exposure. During two site visits (March and May 1996) to the K-25 Site at Oak Ridge, TN, RSL personnel tested and characterized seven different operating systems believed to detect leakage, surface contamination, thickness and corrosion of cylinder walls, and general area contamination resulting from breached cylinders. The following techniques were used and their performances are discussed: Laser-induced fluorescent imaging; Long-range alpha detection; Neutron activation analysis; Differential gamma-ray attenuation; Compton scatterometry; Active infrared inspection; and Passive thermal infrared imaging.
Date: February 1, 1997
Creator: Balick, L.K.; Bowman, D.R. & Bounds, J.H.
Partner: UNT Libraries Government Documents Department

Thermal radiant exitance model performance: Soils and forests

Description: Models of surface temperatures of two land surface types based on their energy budgets were developed to simulate the effects of environmental factors on thermal radiant exitance. The performance of these models is examined in detail. One model solves the non-linear differential equation for heat diffusion in solids using a set of submodels for surface energy budget components. The model performance is examined under three desert conditions thought to be a strong test of the submodels. The accuracy of the temperature predictions and submodels is described. The accuracy of the model is generally good but some discrepancies between some of the submodels and measurements are noted. The sensitivity of the submodels is examined and is seen to be strongly controlled by interaction and feedback among energy components that are a function of surface temperature. The second model simulates vegetation canopies with detailed effects of surface geometry on radiant transfer in the canopy. Foliage solar absorption coefficients are calculated using a radiosity approach for a three layer canopy and long wave fluxes are modeled using a view factor matrix. Sensible and latent heat transfer through the canopy are also simulated using, nearby meteorological data but heat storage in the canopy is not included. Simulations for a coniferous forest canopy are presented and the sensitivity of the model to environmental inputs is discussed.
Date: December 31, 1995
Creator: Balick, L. K. & Smith, J. A.
Partner: UNT Libraries Government Documents Department

RECIPES FOR WRITING ALGORITHMS TO RETRIEVE COLUMNAR WATER VAPOR FOR 3-BAND MULTI-SPECTRAL DATA.

Description: Many papers have considered the theory of retrieving columnar water vapor using the continuum interpolated band ratio (CIBR) and a few the atmospherically pre-corrected differential absorption (APDA) methods. In this paper we aim at giving recipes to actually implement CIBR and APDA for the Multi-spectral Thermal Imager (MTI) with the hope that they can be easily adapted to other sensors such as MODIS, AVIRIS and HYDICE. The algorithms have the four following steps in common: (1) running a radiative transfer (RT) algorithm for a range of water vapor values and a particular observation geometry, (2) computation of sensor band-averaged radiances, (3) computation of a non-linear fit of channel ratios (CIBR or APDA) as a function of water vapor, (4) application of the inverse fit to retrieve columnar water vapor as a function of channel ratio.
Date: January 1, 2001
Creator: Borel, C. C. (Christoph C.); Hirsch, K. L. (Karen L.) & Balick, L. K. (Lee K.)
Partner: UNT Libraries Government Documents Department

Fluorescence emission spectral measurements for the detection of oil on shore

Description: The U.S. DOE Special Technologies Laboratory is developing an airborne Laser-Induced Fluorescence Imaging (LIFI) system to support environmental management of government facilities. This system, or a system to be derived from it, is being evaluated for its potential to detect spilled oils oN shore, in wetlands, and on ice. To more fully understand the detectivity of oil spills, emphasis has been placed on the spectral contrast between the oil signatures and signatures associated with the natural backgrounds (sand, vegetation, etc.). To support this evaluation, two series of controlled measurements have been performed to provide rigorous characterization of the excitation-emission properties of some oils and background materials, and to look at the effects of weathering of oil on terrestrial background materials. Oil targets included a heavy crude oil, diesel, kerosene, and aviation fuel and backgrounds included beach sand, straw, mud, tar and kelp. Fluorescence of oil on background materials decreases rapidly over the first few days of exposure to the environment and is more rapid than for neat oil samples.
Date: December 31, 1996
Creator: Balick, L. K.; Di Benedetto, J. A. & Lutz, S. S.
Partner: UNT Libraries Government Documents Department

Environmental waste site characterization utilizing aerial photographs, remote sensing, and surface geophysics

Description: Six different techniques were used to delineate 40 year old trench boundary at Los Alamos National Laboratory. Data from historical aerial photographs, a magnetic gradient survey, airborne multispectral and thermal infra-red imagery, seismic refraction, DC resistivity, and total field magnetometry were utilized in this process. Each data set indicated a southern and northern edge for the trench. Average locations and 95% confidence limits for each edge were determined along a survey line perpendicular to the trench. Trench edge locations were fairly consistent among all six techniques. Results from a modeling effort performed with the total magnetic field data was the least consistent. However, each method provided unique and complementary information, and the integration of all this information led to a more complete characterization of the trench boundaries and contents.
Date: April 18, 1996
Creator: Pope, P.; Van Eeckhout, E.; Rofer, C.; Baldridge, S.; Ferguson, J.; Jiracek, G. et al.
Partner: UNT Libraries Government Documents Department