3 Matching Results

Search Results

Advanced search parameters have been applied.

Task 3 - Pyrolysis of Plastic Waste. Semiannual report, November 1, 1996--March 31, 1997

Description: Over the last 50 years, the U.S. Department of Energy (DOE) has produced a wide variety of radioactive wastes from activities associated with nuclear defense and nuclear power generation. These wastes include low-level radioactive solid wastes, mixed wastes, and transuranic (TRU) wastes. A portion of these wastes consists of high- organic-content materials, such as resins, plastics, and other polymers; synthetic and natural rubbers; cellulosic-based materials; and oils, organic solvents, and chlorinated organic solvents. Many of these wastes contain hazardous and/or pyrophoric materials in addition to radioactive species. Physical forms of the waste include ion-exchange resins used to remove radioactive elements from nuclear reactor cooling water, lab equipment and tools (e.g., measurement and containment vessels, hoses, wrappings, equipment coverings and components, and countertops), oil products (e.g., vacuum pump and lubrication oils), bags and other storage containers (for liquids, solids, and gases), solvents, gloves, lab coats and anti-contamination clothing, and other items. Major polymer and chemical groups found in high-organic-content radioactive wastes include polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), Teflon(TM), polystyrene (PS), nylon, latex, polyethylene terephthalate (PET), vinyl, high-density polyethylene (HDPE), polycarbonate, nitriles, Tygon(R), butyl, and Tyvec(R).
Date: December 31, 1997
Creator: Ness, Robert O. & Aulich, Ted R.
Partner: UNT Libraries Government Documents Department


Description: The objective of the research described in this report was to provide data and insights that will enable the natural gas industry to (1) significantly improve the assessment of subsurface glycol-related contamination at sites where it is known or suspected to have occurred and (2) make scientifically valid decisions concerning the management and/or remediation of that contamination. The described research was focused on subsurface transport and fate issues related to triethylene glycol (TEG), diethylene glycol (DEG), and ethylene glycol (EG). TEG and DEG were selected for examination because they are used in a vast majority of gas dehydration units, and EG was chosen because it is currently under regulatory scrutiny as a drinking water pollutant. Because benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX) compounds are often very closely associated with glycols used in dehydration processes, the research necessarily included assessing cocontaminant effects on waste mobility and biodegradation. BTEX hydrocarbons are relatively water-soluble and, because of their toxicity, are of regulatory concern. Although numerous studies have investigated the fate of BTEX, and significant evidence exists to indicate the potential biodegradability of BTEX in both aerobic and anaerobic environments (Kazumi and others, 1997; Krumholz and others, 1996; Lovely and others, 1995; Gibson and Subramanian, 1984), relatively few investigations have convincingly demonstrated in situ biodegradation of these hydrocarbons (Gieg and others, 1999), and less work has been done on investigating the fate of BTEX species in combination with miscible glycols. To achieve the research objectives, laboratory studies were conducted to (1) characterize glycol related dehydration wastes, with emphasis on identification and quantitation of coconstituent organics associated with TEG and EG wastes obtained from dehydration units located in the United States and Canada, (2) evaluate the biodegradability of TEG and DEG under conditions relevant to subsurface environments and representative of natural ...
Date: October 1, 2000
Creator: Sorensen, James A.; Gallagher, John R.; Hawthorne, Steven B. & Aulich, Ted R.
Partner: UNT Libraries Government Documents Department

EERC Center for Biomass Utilization 2006

Description: The Center for Biomass Utilization (CBU®) 2006 project at the Energy & Environmental Research Center (EERC) consisted of three tasks related to applied fundamental research focused on converting biomass feedstocks to energy, liquid transportation fuels, and chemicals. Task 1, entitled Thermochemical Conversion of Biomass to Syngas and Chemical Feedstocks, involved three activities. Task 2, entitled Crop Oil Biorefinery Process Development, involved four activities. Task 3, entitled Management, Education, and Outreach, focused on overall project management and providing educational outreach related to biomass technologies through workshops and conferences.
Date: May 27, 2009
Creator: Zygarlicke, Christopher J.; Hurley, John P.; Aulich, Ted R.; Folkedahl, Bruce C.; Strege, Joshua R.; Patel, Nikhil et al.
Partner: UNT Libraries Government Documents Department