Search Results

Advanced search parameters have been applied.
open access

Tribological Behavior of Spark Plasma Sintered Tic/graphite/nickel Composites and Cobalt Alloys

Description: Monolithic composites are needed that combine low friction and wear, high mechanical hardness, and high fracture toughness. Thin films and coatings are often unable to meet this engineering challenge as they can delaminate and fracture during operation ceasing to provide beneficial properties during service life. Two material systems were synthesized by spark plasma sintering (SPS) and were studied for their ability to meet these criteria. A dual hybrid composite was fabricated and consisted of… more
Date: December 2013
Creator: Kinkenon, Douglas
Partner: UNT Libraries
open access

Nano-crystallization Inhibition in 5 Nm Ru Film Diffusion Barriers for Advanced Cu-interconnect

Description: As the semiconductor industries are moving beyond 22 nm node technology, the currently used stacked Ta/TaN diffusion barrier including a copper seed will be unable to fulfill the requirements for the future technologies. Due to its low resistivity and ability to perform galvanic copper fill without a seed layer, ruthenium (Ru) has emerged as a potential copper diffusion barrier. However, its crystallization and columnar nanostructure have been the main cause of barrier failures even at low proc… more
Date: December 2013
Creator: Sharma, Bed P.
Partner: UNT Libraries
open access

Exploring the Synergistic Effects of MXene-based Nanocomposites for Superlubricity and Friction/Wear Reduction on Rough Steel Surfaces

Description: The aim of this thesis is to advance the field of solid lubrication science by developing coatings that provide reliable performance in ambient conditions, work on rough surfaces, and are amenable to industrial size and design complexities. Two different coating systems, Ti3C2Tx-MoS2 and Ti3C2Tx-Graphene Oxide blends, were studied in this work. The Ti3C2Tx-MoS2 nanocomposites were spray-coated onto rough 52100-grade steel surfaces, and their tribological performance was evaluated in a ball-on-d… more
Date: July 2023
Creator: Macknojia, Ali Zayaan
Partner: UNT Libraries
open access

Tribocatalytically-Active Coatings for Enhanced Tribological Performance and Carbon-Based Tribofilm Formation

Description: In this study, we investigate the fundamental mechanisms defining the approach for addressing tribological challenges in mechanical systems via the use of the tribocatalytically active coating. The coating is designed using an electrodeposition process and consists of a hard amorphous cobalt-phosphorous matrix with the incorporation of tribocatalytically-active nickel and copper. Our focus is on understanding the effect of the tribocatalytic elements, Cu vs Ni, on the coating's performance in h… more
Date: July 2023
Creator: Al Sulaimi, Rawan
Partner: UNT Libraries
open access

Rapid Synthesis of Nanoporous Conformal Coatings via Plasma-Enhanced Sequential Infiltration of a Polymer Template

Description: This article reports a plasma-enhanced sequential infiltration synthesis (PE SIS) as a new platform toward deposition of nanoporous inorganic films.
Date: November 10, 2017
Creator: She, Yunlong; Lee, Jihyung; Diroll, Benjamin T.; Lee, Byeongdu; Aouadi, Samir; Shevchenko, Elena V. et al.
Partner: UNT College of Engineering

Influence of Externally Applied Magnetic Field on the Mechanical Behavior of Paramagnetic Materials

Description: Current ways to alter the microstructure of materials are usually through heat treatments, alloying, and other physical metallurgical methods. Recent efforts in the 21st century are focused on altering the microstructure of a material without physical contact which can be achieved through exposure to a magnetic field (MF). The motivation of this research is to study the quantum effects by subjecting solid-state metals to exposure of MFs. Many of the popular metals currently used in industry are… more
This item is restricted from view until January 1, 2028.
Date: December 2022
Creator: Reeder, Jessica Phoebe
Partner: UNT Libraries
open access

Characterization and Chemical Analysis of Fundamental Components for Lead Acid Batteries

Description: Although markets for alternative batteries, such as Li-ion, are growing, Pb-alloy batteries still dominate the market due to their low cost and good functionality. Even though these Pb-alloy batteries have been around since their discovery in 1859, little research involving advanced characterization techniques, such as synchrotron radiation X-ray diffraction (SR-XRD) and transmission electron diffraction (TEM) have been performed on Pb-alloys and sulfation, a failure mode in lead acid batteries… more
Date: May 2022
Creator: Wall, Michael T
Partner: UNT Libraries

Developing Ultra-Fast Plasmonic Spiking Neuron via Integrated Photonics

Description: This research provides a proof of concept and background theory for the physics behind the state-of-the-art ultra-fast plasmonic spiking neurons (PSN), which can serve as a primary synaptic device for developing a platform for fast neural computing. Such a plasmonic-powered computing system allows localized AI with ultra-fast operation speed. The designed architecture for a plasmonic spiking neuron (PSN) presented in this thesis is a photonic integrated nanodevice consisting of two electro-opti… more
Date: August 2022
Creator: Goudarzi, Abbas, Sr.
Partner: UNT Libraries

Design and Performance of Metal Matrix Composite Composed of Porous Boron Carbide Created by Magnetic Field-Assisted Freeze Casting Infiltrated with Aluminum (A356)

Description: Magnetic field-assisted freeze-casting was used to create porous B4C ceramic preforms. An optimum slurry consisted of a mixture of B4C powders with 6 wt.% Er2O3 powder in an H2O-PVA solution and was cooled at a rate of 1 °C/min from room temperature to -30 °C resulting in porous green state ceramic preform with vertical channels. The Er2O3 powder was added to improve the magnetic response of the slurry. The preform was then sublimated to remove H2O and then sintered. The sintered ceramic prefor… more
Date: May 2022
Creator: Gamboa, Gerardo
Partner: UNT Libraries
open access

Mechanically Driven Reconstruction of Materials at Sliding Interfaces to Control Wear

Description: To minimize global carbon emissions, having efficient jet engines and internal combustion engines necessitates utilizing lightweight alloys such as Al, Ti, and Mg-based alloys. Because of their remarkable strength/weight ratio, these alloys have received a lot of attention. Nonetheless, they have very poor tribological behavior, particularly at elevated temperatures beyond 200 °C, when most liquid lubricants begin to fail in lubrication. Over the last two decades, there has been a lot of intere… more
Date: May 2022
Creator: Shirani, Asghar
Partner: UNT Libraries
open access

Fractography and Mechanical Properties of Laminated Alumina and Yttria Stabilized Zirconia

Description: Yttria stabilized zirconia (YSZ) is a polymorph with possible phase transformation toughening occurring during impact. The fractography and mechanical properties of laminated alumina and YSZ were studied in this thesis. Five sample types were studied in this thesis: (5:5) Al2O3/YSZ (a sequence of 5 alumina tapes stacked on 5 YSZ tapes), (5:5) Al2O3/YSZ (1 wt.% Pure ZrO2), (7:3) Al2O3/YSZ, Al2O3, and YSZ. Scanning electron microscopy (SEM) and X-ray microscopy (XRM) were used to study morphology… more
Date: December 2021
Creator: Cotton, Shomari Johnny
Partner: UNT Libraries

Defect-Engineered Two-Dimensional Transition Metal Dichalcogenides for High-Efficient Piezoelectric Sensor

Description: Piezoelectricity in two-dimensional (2D) transition metal dichalcogenides (TMDs) has attracted significant attention due to their unique crystal structure and the lack of inversion centers when the bulk TMDs thin down to monolayer. Although the piezoelectricity effect in atomic-thickness TMDs has been demonstrated, they are not scalable. Herein, we demonstrate a piezoelectric effect from large-scale, sputtered MoS2 and WS2 using a robust defect-engineering based on the thermal-solvent annealing… more
Date: May 2021
Creator: Kim, Junyoung
Partner: UNT Libraries

Investigation of Porous Ceramic Structure by Freeze-Casting

Description: The design and fabrication of porous ceramic materials with anisotropic properties has, in recent years, gained popularity due to their potential application in various areas that include medical, energy, defense, space, and aerospace. Freeze-casting is an effective, low-cost, and safe method as a wet shaping technique to create these structures. To control the morphology of these materials, many critical factors were found to play an important role. In this dissertation, the processing paramet… more
Date: May 2021
Creator: Bakkar, Said Adnan
Partner: UNT Libraries
open access

Processing-Structure Relationships of Reactive Spark Plasma Sintered Diamond Composites

Description: Traditional lightweight armor ceramics such as boron carbide (B4C) and silicon carbide (SiC) are used alone or together in varying amounts to create monolithic protective plates. These materials exhibit relatively small differences in hardness, flexure strength, and fracture toughness. Many of the routes taken during the synthesis of the powder and sintering of the plates using traditional ceramic processing techniques have long processing times, tend to leave asperities within the microstruc… more
Date: August 2022
Creator: Garcia, Christian
Partner: UNT Libraries
open access

Unraveling the Effect of Atomic Configurations and Structural Statistics on Mechanical Behavior of Multicomponent and Amorphous Alloys

Description: Multicomponent high-entropy and amorphous alloys represent relatively new classes of structural materials with complex atomic configurations and exceptional mechanical properties. However, there are several knowledge gaps in the relationships between their atomic structure and mechanical properties. Understanding these critical relationships will enable novel alloy design and tailoring of their mechanical properties for desired engineering applications. In this dissertation, first-principles ca… more
Date: December 2021
Creator: Yang, Yu Chia
Partner: UNT Libraries
open access

Thermokinetics-Dependent Microstructural Evolution and Material Response in Laser-Based Additive Manufacturing

Description: Laser-based additive manufacturing offers a high degree of thermokinetic flexibility that has implications on the structure and properties of the fabricated component. However, to exploit the flexibility of this process, it is imperative to understand the process-inherent thermokinetic evolution and its effect on the material characteristics. In view of this, the present work establishes a fundamental understanding of the spatiotemporal variation of thermokinetics during the fabrication of the … more
Date: December 2021
Creator: Pantawane, Mangesh V
Partner: UNT Libraries

Self-Healing Ceramics for High Temperature Application

Description: Ceramics have a wide variety of applications due to their unique properties; however, the low fracture toughness leads the formation and propagation of unpredictable cracks, and reduces their reliability. To solve this problem, self-healing adaptive oxides were developed. The aim of the work is to gain new insights into self-healing mechanisms of ceramics and their application. Binary oxide systems were investigated that are at least partially healed through the extrinsic or intrinsic addition … more
Date: August 2021
Creator: Gu, Jingjing
Partner: UNT Libraries

High Strain Rate Deformation Behavior of Single-Phase and Multi-Phase High Entropy Alloys

Description: Fundamental understanding of high strain rate deformation behavior of materials is critical in designing new alloys for wide-ranging applications including military, automobile, spacecraft, and industrial applications. High entropy alloys, consisting of multiple elements in (near) equimolar proportions, represent a new paradigm in structural alloy design providing ample opportunity for achieving excellent performance in high strain rate applications by proper selection of constituent elements a… more
Date: May 2021
Creator: Muskeri, Saideep
Partner: UNT Libraries
open access

Fabrication of the Novel Asymmetric Polymeric Materials via Bottom-Up Approach

Description: Asymmetric polymeric materials can be formed by either top-down or bottom-up methods. Bottom-up methods involve assembling the atoms and molecules to form small nanostructures by carefully controlled synthesis, which results in a reduction of some of the top-down limitations. In this dissertation, thermal, tribological and antireflective properties of polymeric materials have been enhanced by introducing structural asymmetry. The overall performance of commercial polymeric coatings, e.g. epoxy … more
Date: May 2022
Creator: Hnatchuk, Nataliia
Partner: UNT Libraries
open access

Effect of Modifier Cation Substitution on Structure and Properties of Bioactive Glasses from Molecular Dynamics Simulations

Description: Bioactive glass is a type of third generation bioactive material that can bond to both soft and hard tissue with applications ranging from bone defect repair, coatings for metallic implants, to scaffolds for tissue engineering. Design of bioactive glasses for these applications rely on a detailed understanding of the structures of these glasses which are complicated and multicomponent. In this thesis, I have applied molecular dynamics (MD) simulations with interatomic potentials developed in ou… more
Date: May 2022
Creator: Vu, Myra
Partner: UNT Libraries

Time-Dependent Deformation Mechanisms in Metallic Glasses as a Function of Their Structural State

Description: In this study, the time-dependent deformation behavior of several model bulk metallic glasses (BMGs) was studied. The BMGs were obtained in different structural states by thermal relaxation below their glass transition temperature, cryogenic thermal cycling, and chemical rejuvenation by micro-alloying. The creep behavior of Zr52.5Ti5Cu17.9Ni14.6Al10 BMG in different structural states was investigated as a function of peak load and temperature. The creep strain rate sensitivity (SRS) indicated a… more
Date: May 2022
Creator: Ghodki, Nandita
Partner: UNT Libraries

Corrosion Behavior of High Entropy Alloys in Molten Chloride and Molten Fluoride Salts

Description: High entropy alloys (HEAs) or complex concentrated alloys (CCAs) represent a new paradigm in structural alloy design. Molten salt corrosion behavior was studied for single-phase HEAs such as TaTiVWZr and HfTaTiVZr, and multi-phase HEAs such as AlCoCrFeNi2.1. De-alloying with porosity formation along the exposed surface and fluxing of unstable oxides were found to be primary corrosion mechanisms. Potentiodynamic polarization study was combined with systematic mass–loss study for TaTiVWZr, HfTaT… more
Date: May 2022
Creator: Patel, Kunjalkumar Babubhai
Partner: UNT Libraries

Wear, Friction and High Shear Strain Deformation of Metallic Glasses

Description: In this work, wear and scratch behavior of four different bulk metallic glasses (BMGs) namely Zr41.2Cu12.5Ni10Ti13.8Be22.5 (LM 1), Zr57Cu15.4Ni12.6Al10Nb5 (LM 106), Ni60Pd20P17B3 (Ni-BMG), and Pt57.5Cu14.7Ni5.3P22.5 (Pt-BMG) were compared. Shear band formation on the edges of the scratch groove with spallation was found to be the primary failure mechanism in progressive scratch tests. The wear behavior and the scratch response of model binary Ni-P metallic glasses was systematically studied as … more
Date: May 2022
Creator: Pole, Mayur
Partner: UNT Libraries

Scuffing and Wear Prevention in Low Viscosity Hydrocarbon Fuels

Description: To design high pressure fuel system components that resist wear and scuffing failure when operated in low viscosity fuels, a comprehensive study on the tribological performance of various existing coating materials is necessary. This thesis aims to provide the relative performance of a variety of coating materials across different fuel environments by testing them in conditions that model those experienced in fuel pumps. The relative performance of these coatings are then indexed across a varie… more
Date: August 2022
Creator: Dockins, Maddox Wade
Partner: UNT Libraries
Back to Top of Screen