3 Matching Results

Search Results

Advanced search parameters have been applied.

Effects of diesel exhaust on the microbiota within a tuffaceous tunnel system

Description: The abundance and distribution of microbiota that may be impacted by diesel and diesel exhaust were investigated from three depths into the walls and invert (floor) of U12n tunnel at Rainier Mesa, Nevada Test Site, a potential geological analog of Yucca Mountain. Enumerations included total cell counts, and numbers of aerobic heterotrophic, sulfate-reducing, nitrate-reducing, and diesel-degrading bacteria. Additionally, the disappearance of total petroleum hydrocarbons was determined in microcosms containing subsurface materials that were amended with diesel fuel. Results revealed that microbes capable of utilizing diesel and diesel combustion products were present in the subsurface in both the walls and the invert of the tunnel. The abundance of specific bacterial types in the tunnel invert, a perturbed environment, was greater than that observed in the tunnel wall. Few trends of microbial distribution either into the tunnel wall or the invert were noted with the exception of aerobic heterotrophic abundance which increased with depth into the wall and decreased with depth into the invert. No correlation between microbiota and a specific introduced chemical species have yet been determined. The potential for microbial contamination of the tunnel wall during sampling was determined to be negligible by the use of fluorescently labeled latex spheres (1{mu}m in dia.) as tracers. Results indicate that additional investigations might be needed to examine the microbiota and their possible impacts on the geology and geochemistry of the subsurface, both indigenous microbiota and those microorganisms that will likely be introduced by anthropogenic activity associated with the construction of a high-level waste repository.
Date: August 1, 1996
Creator: Haldeman, D.L.; Lagadinos, T.; Amy, P.S.; Hersman, L. & Meike, A.
Partner: UNT Libraries Government Documents Department

Laboratory and Field Evidence for Long-Term Starvation Survival of Microorganisms in Subsurface Terrestrial Environments

Description: BIOGEOCHEMICAL MODELING OF GROUNDWATER FLOW AND NUTRIENT FLUX IN SUBSURFACE ENVIRONMENTS INDICATES THAT INHABITANT MICROORGANISMS EXPERIENCE SEVERE NUTRIENT LIMITATION. USING LABORATORY AND FIELD METHODS, WE HAVE BEEN TESTING STARVATION SURVIVAL IN SUBSURFACE MICROORGANISMS. IN MICROCOSM EXPERIMENTS, WE HAVE SHOWN THAT STRAINS OF TWO COMMONLY ISOLATED SUBSURFACE GENERA, ARTHROBACTER AND PSEUDOMONAS, ARE ABLE TO MAINTAIN VIABILITY IN LOW-NUTRIENT, NATURAL SUBSURFACE SEDIMENTS FOR OVER ONE YEAR. THESE NON-SPORE-FORMING BACTERIA UNDERGO RAPID INITIAL MINIATURIZATION FOLLOWED BY A STABILIZATION OF CELL SIZE. MEMBRANE LIPID PHOSPHOLIPID FATTY ACID (PLFA) PROFILES OF THE PSEUDOMONAS ARE CONSISTENT WITH ADAPTATION TO NUTRIENT STRESS; ARTHROBACTER APPARENTLY RESPONDS TO NUTRIENT DEPRIVATION WITHOUT ALTERING MEMBRANE PLFA. TO TEST SURVIVABILITY OF MICROORGANISMS OVER A GEOLOGIC TIME SCALE, WE CHARACTERIZED MICROBIAL COMMUNITIES IN A SEQUENCE OF UNSATURATED SEDIMENTS RANGING IN AGE FROM MODEM TO {gt}780,000 years. Sediments were relatively uniform silts in Eastern Washington State. Porewater ages at depth (measured by the chloride mass-balance approach) were as old as 3,600 years. Microbial abundance, biomass, and activities (measured by direct counts, culture counts, total PLFAs, and radiorespirometry) declined with sediment age. The pattern is consistent with laboratory microcosm studies of Microbial survival: rapid short-term change followed by long-term survival of a proportion of cells. Even the oldest sediments evinced a small but viable Microbial community. Microbial survival appeared to be a function of sediment age. Porewater age appeared to influence the markup of surviving communities, as indicated by PLFA profiles. Sites with different Porewater recharge rates and patterns of Pleistocene flooding had different communities.
Date: December 31, 1997
Creator: Kieft, T.L.; Murphy, E.M.; Amy, P.S.; Haldeman, D.L. & Ringelberg, D. B.
Partner: UNT Libraries Government Documents Department

Microbial Transport, Survival, and Succession in a Sequence of Buried Sediments

Description: Two chronosequence of unsaturated buried loess sediments ranging in age from <10,000 years to >1 million years were investigated to reconstruct patterns of microbial ecological succession that have occurred since sediment burial. The relative importance of microbial transport and survival to succession were inferred from sediment ages, porewater ages, patterns of abundance (measured by direct counts, counts of culturable cells, and total phospholipid fatty acids), activities (measured by radiotracer and enzyme assays), and community composition (measured by phospholipid fatty acid patterns and Biolog substrate usage). Samples were collected by coring at two sites 40 km apart in the Palouse region of eastern Washington State near the towns of Washtucna and Winona. The Washtucna site was flooded multiple times during the Pleistocene by glacial outburst floods; the elevation of the Winona site is above flood stage. Sediments at the Washtucna site were collected from near surface to 14.9 m depth, where the sediment age was {approx}250 ka and the porewater age was 3700 years; sample intervals at the Winona site ranged from near surface to 38 m (sediment age: {approx}1 Ma; porewater age: 1200 years). Microbial abundance and activities declined with depth at both sites; however, even the deepest, oldest sediments showed evidence of viable microorganisms. Sediments of equivalent age had equal quantities of microorganisms, but differing community types. Differences in community make-up between the two sites can be attributed to differences in groundwater recharge and paleoflooding. Estimates of the ages of the microbial communities can be constrained by porewater and sediment ages. In the shallower sediments (<9 m at Washtucna, <12 m at Winona), the microbial communities are likely similar in age to the groundwater; thus, microbial succession has been influenced by recent transport of microorganisms from the surface. In the deeper sediments, the populations may be considerably older than ...
Date: January 5, 1995
Creator: Kieft, T.L.; Murphy, E.M.; Haldeman, D.L.; Amy, P.S.; Bjornstad, B.N.; McDonald, E.V. et al.
Partner: UNT Libraries Government Documents Department