18 Matching Results

Search Results

Advanced search parameters have been applied.

Metallic Membrane Materials Development for Hydrogen Production from Coal Derived Syngas

Description: The goals of Office of Clean Coal are: (1) Improved energy security; (2) Reduced green house gas emissions; (3) High tech job creation; and (4) Reduced energy costs. The goals of the Hydrogen from Coal Program are: (1) Prove the feasibility of a 40% efficient, near zero emissions IGCC plant that uses membrane separation technology and other advanced technologies to reduce the cost of electricity by at least 35%; and (2) Develop H{sub 2} production and processing technologies that will contribute {approx}3% in improved efficiency and 12% reduction in cost of electricity.
Date: February 26, 2012
Creator: Dogan, O.N.; Howard, B.H. & Alman, D.E.
Partner: UNT Libraries Government Documents Department

The Performance of Ce Surface Treated Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnects

Description: This research deals with the effect of a Ce surface treatment on the behavior of Fe-Cr-Mn ferritic stainless steels which may have application in SOFC technology. This treatment consisted of applying a slurry of CeO2 and a halide activator to the surface of coupons. After the slurry dried the coupons were heated to 900C in a controlled atmosphere furnace for 12 hours. The effectiveness of the treatment on commercial (Type 409 (12Cr), Type 430 (18Cr), Crofer 22APU (22Cr), Type 446(26Cr)) and experimental (NETL F9 (12Cr) and NETL F5 (22Cr)) alloys as a function of Cr content will be presented. The oxidation behavior of the alloys was assessed by exposing coupons (untreated and treated) to moist air at 800C. Area specific resistance (ASR) was measured at 800C. In general, the rare earth treatment effectively reduced the oxidation rate, resulting in thinner oxide scales and less internal oxidation.
Date: September 1, 2007
Creator: Alman, D.E. & Jablonski, P.D.
Partner: UNT Libraries Government Documents Department

Influence of alloy content and a cerium surface treatment on the oxidation behavior of Fe-Cr ferritic stainless steels

Description: The cost of solid oxide fuel cells (SOFC) can be significantly reduced by using interconnects made from ferritic stainless steels. In fact, several alloys have been developed specifically for this application (Crofer 22APU and Hitachi ZMG323). However, these steels lack environmental stability in SOFC environments, and as a result, degrade the performance of the SOFC. A steel interconnect can contribute to performance degradation through: (i) Cr poisoning of electrochemically active sites within the cathode; (ii) formation of non-conductive oxides, such as SiO2 or Al2O3 from residual or minor alloying elements, at the base metal-oxide scale interface; and/or (iii) excessive oxide scale growth, which may also retard electrical conductivity. Consequently, there has been considerable attention on developing coatings to protect steel interconnects in SOFC environments and controlling trace elements during alloy production. Recently, we have reported on the development of a Cerium surface treatment that improves the oxidation behavior of a variety alloys, including Crofer 22APU [1-5]. Initial results indicated that the treatment may improve the performance of Crofer 22APU for SOFC application by: (i) retarding scale growth resulting in a thinner oxide scale; and (ii) suppressing the formation of a deleterious continuous SiO2 layer that can form at the metal-oxide scale interface in materials with high residual Si content [5]. Crofer 22 APU contains Fe-22Cr-0.5Mn-0.1Ti (weight percent). Depending on current market prices and the purity of raw materials utilized for ingot production, Cr can contribute upwards of 90 percent of the raw materials cost. The present research was undertaken to determine the influence of Cr content and minor element additions, especially Ti, on the effectiveness of the Ce surface treatment. Particular emphasis is placed on the behavior of low Cr alloys.
Date: January 1, 2006
Creator: Alman, D. E. & Jablonski, P. D.
Partner: UNT Libraries Government Documents Department

The influence of Si content on the oxidation behavior of Type 430 stainless steels

Description: Trace “alloying” elements can significantly affect alloy performance. One example is the effect of residual Si content on the oxidation behavior of stainless steels. Small amounts of Si can form a continuous SiO2 layer at the metal-oxide scale interface. This is beneficial for enhancing oxidation resistance; however it is detrimental for fuel cell interconnect application, as SiO2 is an electrical insulator. In order to assess the effect of SiO2 on the performance of Type 430 ferritic steel, a potential interconnect alloy, a series of custom 430 alloys were melted and reduced to sheet with controlled Si contents (ranging from <0.01 to 0.1 wt% Si). Oxidation tests were conducted at 800oC in moist air. The behavior was compared to a commercial Type 430 alloy (with 0.4 wt%Si) and Crofer 22APU. It was found that for the 430 alloys, the oxidation rate increased with decreasing Si content. However, after 4000 hour of exposure, the mass gain for the low Si 430 alloys was comparable to Crofer 22APU.
Date: September 1, 2007
Creator: Alman, D.E. & Jablonski, P.D.
Partner: UNT Libraries Government Documents Department

Corrosion of Titanium Matrix Composites

Description: The corrosion behavior of unalloyed Ti and titanium matrix composites containing up to 20 vol% of TiC or TiB{sub 2} was determined in deaerated 2 wt% HCl at 50, 70, and 90 degrees C. Corrosion rates were calculated from corrosion currents determined by extrapolation of the tafel slopes. All curves exhibited active-passive behavior but no transpassive region. Corrosion rates for Ti + TiC composites were similar to those for unalloyed Ti except at 90 degrees C where the composites were slightly higher. Corrosion rates for Ti + TiB{sub 2} composites were generally higher than those for unalloyed Ti and increased with higher concentrations of TiB{sub 2}. XRD and SEM-EDS analyses showed that the TiC reinforcement did not react with the Ti matrix during fabrication while the TiB{sub 2} reacted to form a TiB phase.
Date: September 22, 2002
Creator: Covino, B.S., Jr. & Alman, D.E.
Partner: UNT Libraries Government Documents Department

An update on field test results for an engineered refractory for slagging gasifiers

Description: The widespread commercial adaptation of slagging gasifier technology to produce power, fuel, and/or chemicals from coal will depend in large measure on the technology’s ability to prove itself both economic and reliable. Improvements in gasifier reliability, availability, and maintainability will in part depend on the development of improved performance structural materials with longer service life in this application. Current generation refractory materials used to line the air-cooled, slagging gasifier vessel, and contain the gasification reaction, often last no more than three to 18 months in commercial applications. The downtime required for tear-out and replacement of these critical materials contributes to gasifier on-line availabilities that fall short of targeted goals. In this talk we will discuss the development of an improved refractory material engineered by the NETL for longer service life in this application, and provide an update on recent field test results.
Date: May 1, 2006
Creator: Dogan, O.N.; Alman, D.E.; Jablonski, P.D. & Hawk, J.A.
Partner: UNT Libraries Government Documents Department

Microstructural Stability and Oxidation Resistance of 9-12 Chromium Steels at Elevated Temperatures

Description: Various martensitic 9-12 Cr steels are utilized currently in fossil fuel powered energy plants for their good elevated temperature properties such as creep strength, steam side oxidation resistance, fire side corrosion resistance, and thermal fatigue resistance. Need for further improvements on the properties of 9-12 Cr steels for higher temperature (>600oC) use is driven by the environmental concerns (i.e., improve efficiency to reduce emissions and fossil fuel consumption). In this paper, we will discuss the results of the research done to explore new subsitutional solute solution and precipitate hardening mechanisms for improved strength of 9-12 Cr martensitic steels. Stability of the phases present in the steels will be evaluated for various temperature and time exposures. A comparison of microstructural properties of the experimental steels and commercial steels will also be presented. <br><br> The influence of a Ce surface treatment on oxidation behavior of a commercial (P91) and several experimental steels containing 9 to 12 weight percent Cr was examined at 650ºC in flowing dry and moist air. The oxidation behavior of all the alloys without the Ce modification was significantly degraded by the presence of moisture in the air during testing. For instance the weight gain for P91 was two orders of magnitude greater in moist air than in dry air. This was accompanied by a change in oxide scale from the formation of Cr-based scales in dry air to the formation of Fe-based scales in moist air. The Ce surface treatment was very effective in improving the oxidation resistance of the experimental steels in both moist and dry air. For instance, after exposure to moist air at 650ºC for 2000 hours, an experimental alloy with the cerium surface modification had a weight gain three orders of magnitude lower than the alloy without the Ce modification and two orders of ...
Date: May 1, 2006
Creator: Dogan, O.N.; Alman, D.E.; Jablonski, P.D. & Hawk, J.A.
Partner: UNT Libraries Government Documents Department

Oxidation of interconnect alloys in an electric field

Description: The effect of an electric field on the oxidation of interconnect alloys was examined with a representative array of materials: an iron-base ferritic chromia former (E-brite), an iron-base ferritic chromia former with Mn and La (Crofer 22APU), a nickel-base chromia former (IN-718), and a nickelbase chromia former with Mn and La (Haynes 230). Environmental variables include temperature and oxygen partial pressure. The resulting scales were examined to determine if applied electrical current induces changes in mechanism or scale growth kinetics.
Date: October 1, 2006
Creator: Holcomb, G.R.; Alman, D.E.; Adler, T.A. & Jablonski, P.D.
Partner: UNT Libraries Government Documents Department

Influence of a Cerium Surface Treatment on the Oxidation Behavior of Cr2O3-Forming Alloys (title on slides varies: Oxidation Behavior of Cerium Surface Treated Chromia Forming Alloys)

Description: Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This temperature will require the construction of boiler and turbine components from austenitic stainless steels and nickel alloys. Many of the alloys being considered for use are primarily Cr2O3 forming alloys [1-4]. It is well known that the addition of a small amount of reactive elements, such as the rare earths elements Ce, La, and Y, can significantly improve the high temperature oxidation resistance of both iron- and nickel- base alloys. A list of the benefits of the reactive element effect include: (i) slowing scale growth, (ii) enhancing scale adhesion; and (iii) stabilizing Cr2O3 formation at lower Cr levels. The incorporation of the reactive element can be made in the melt or through a surface infusion or surface coating. Surface modifications allow for the concentration of the reactive element at the surface where it can provide the most benefit. This paper will detail a Ce surface treatment developed at NETL that improves the high temperature oxidation resistance of Cr2O3 forming alloys. The treatment consists of painting, dip coating, or spraying the alloy surface with a slurry containing CeO2 and a halide activator followed by a thermal treatment in a mild (x10-3 Torr) vacuum. During treatment the CeO2 reacts with the alloy to for a thin CrCeO3-type scale on the alloy surface. Upon subsequent oxidation, scale growth occurs at a reduced rate on alloys in the surface treated condition compared to those in the untreated condition.
Date: April 1, 2007
Creator: Alman, D.E.; Holcomb, G.R.; Adler, T.A. & Jablonski, P.D.
Partner: UNT Libraries Government Documents Department

Evaluation of a Surface Treatment on the Performance of Stainless Steels for SOFC Interconnect Applications

Description: Pack cementation-like Cerium based surface treatments have been found to be effective in enhancing the oxidation resistance of ferritic steels (Crofer 22APU) for solid oxide fuel cell (SOFC) applications. The application of either a CeN- or CeO2 based surface treatment results in a decrease in weight gain by a factor of three after 4000 hours exposure to air+3%H2O at 800oC. Similar oxide scales formed on treated and untreated surfaces, with a continuous Cr-Mn outer oxide layer and a continuous inner Cr2O3 layer formed on the surface. However, the thickness of the scales, and the amount of internal oxidation were significantly reduced with the treatment, leading to the decrease in oxidation rate. This presentation will detail the influence of the treatment on the electrical properties of the interconnect. Half-cell experiments (LSM cathode sandwiched between two steel interconnects) and full SOFC button cell experiments were run with treated and untreated interconnects. Preliminary results indicate the Ce treatment can improve SOFC performance.
Date: April 1, 2007
Creator: Alman, D. E.; Holcomb, G. R.; Adler, T. A.; Wilson, R. W. & Jablonski, P. D.
Partner: UNT Libraries Government Documents Department

The Effect of Silicon and Aluminum Additions on the Oxidation Resistance of Lean Chromium Stainless Steels

Description: The effect of Si and Al additions on the oxidation of lean chromium austenitic stainless steels has been studied. A baseline composition of Fe-16Cr-16Ni-2Mn-1Mo was selected to allow combined Si and Al additions of up to 5 wt. pct. in a fully austenitic alloy. The baseline composition was selected using a net Cr equivalent equation to predict the onset of G-ferrite formation in austenite. Cyclic oxidation tests in air for 1000 hours were carried out on alloys with Si only or combined Si and Al additions in the temperature range 700 C to 800 C. Oxidation resistance of alloys with Si only additions were outstanding, particularly at 800 C. It was evident that different rate controlling mechanisms for oxidation were operative at 700 C and 800 C in the Si alloys. In addition, Si alloys pre-oxidized at 800 C, showed a zero weight gain in subsequent testing for 1000 hours at 700 C. The rate controlling mechanism in alloys with combined Si and Al addition for oxidation at 800 C was also different than alloys with Si only. SEM and ESCA analysis of the oxide films and base material at the oxide/base metal interface were conducted to study potential rate controlling mechanisms.
Date: September 2001
Creator: Dunning, J. S.; Alman, D. E. & Rawers, J. C.
Partner: UNT Libraries Government Documents Department

Oxidation of alloys targeted for advanced steam turbines

Description: Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.
Date: March 12, 2006
Creator: Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M. & Alman, D.E.
Partner: UNT Libraries Government Documents Department

Steam turbine materials and corrosion

Description: Ultra-supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760°C. This project examines the steamside oxidation of candidate alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines. As part of this research a concern has arisen about the possibility of high chromia evaporation rates of protective scales in the turbine. A model to calculate chromia evaporation rates is presented.
Date: December 1, 2007
Creator: Holcomb, G.R.; Alman, D.E.; Dogan, O.N.; Rawers, J.C.; Schrems, K.K. & Ziomek-Moroz, M.
Partner: UNT Libraries Government Documents Department

Corrosion Performance of Ferritic Steel for SOFC Interconnect Applications

Description: Ferritic stainless steels have been identified as potential candidates for interconnects in planar-type solid oxide fuel cells (SOFC) operating below 800ºC. Crofer 22 APU was selected for this study. It was studied under simulated SOFC-interconnect dual environment conditions with humidified air on one side of the sample and humidified hydrogen on the other side at 750ºC. The surfaces of the oxidized samples were studied by scanning electron microscopy (SEM) equipped with microanalytical capabilities. X-ray diffraction (XRD) analysis was also used in this study.
Date: November 1, 2006
Creator: Ziomek-Moroz, M.; Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Jablonski, P.D. & Alman, D.E.
Partner: UNT Libraries Government Documents Department

Ultra-Supercritical Steam Corrosion

Description: Efficiency increases in fossil energy boilers and steam turbines are being achieved by increasing the temperature and pressure at the turbine inlets well beyond the critical point of water. To allow these increases, advanced materials are needed that are able to withstand the higher temperatures and pressures in terms of strength, creep, and oxidation resistance. As part of a larger collaborative effort, the Albany Research Center (ARC) is examining the steam-side oxidation behavior for ultrasupercritical (USC) steam turbine applications. Initial tests are being done on six alloys identified as candidates for USC steam boiler applications: ferritic alloy SAVE12, austenitic alloy Super 304H, the high Cr-high Ni alloy HR6W, and the nickel-base superalloys Inconel 617, Haynes 230, and Inconel 740. Each of these alloys has very high strength for its alloy type. Three types of experiments are planned: cyclic oxidation in air plus steam at atmospheric pressure, thermogravimetric ana lysis (TGA) in steam at atmospheric pressure, and exposure tests in supercritical steam up to 650 C (1202 F) and 34.5 MPa (5000 psi). The atmospheric pressure tests, combined with supercritical exposures at 13.8, 20.7, 24.6, and 34.5 MPa (2000, 3000, 4000, and 5000 psi) should allow the determination of the effect of pressure on the oxidation process.
Date: April 22, 2003
Creator: Holcomb, G. R.; Alman, D. E.; Bullard, S. B.; Covino, B. S., Jr.; Cramer, S. D. & Ziomek-Moroz, M.
Partner: UNT Libraries Government Documents Department