8 Matching Results

Search Results

Advanced search parameters have been applied.

Final LDRD report : design and fabrication of advanced device structures for ultra high efficiency solid state lighting.

Description: The goal of this one year LDRD was to improve the overall efficiency of InGaN LEDs by improving the extraction of light from the semiconductor chip. InGaN LEDs are currently the most promising technology for producing high efficiency blue and green semiconductor light emitters. Improving the efficiency of InGaN LEDs will enable a more rapid adoption of semiconductor based lighting. In this LDRD, we proposed to develop photonic structures to improve light extraction from nitride-based light emitting diodes (LEDs). While many advanced device geometries were considered for this work, we focused on the use of a photonic crystal for improved light extraction. Although resonant cavity LEDs and other advanced structures certainly have the potential to improve light extraction, the photonic crystal approach showed the most promise in the early stages of this short program. The photonic crystal (PX)-LED developed here incorporates a two dimensional photonic crystal, or photonic lattice, into a nitride-based LED. The dimensions of the photonic crystal are selected such that there are very few or no optical modes in the plane of the LED ('lateral' modes). This will reduce or eliminate any radiation in the lateral direction so that the majority of the LED radiation will be in vertical modes that escape the semiconductor, which will improve the light-extraction efficiency. PX-LEDs were fabricated using a range of hole diameters and lattice constants and compared to control LEDs without a photonic crystal. The far field patterns from the PX-LEDs were dramatically modified by the presence of the photonic crystal. An increase in LED brightness of 1.75X was observed for light measured into a 40 degree emission cone with a total increase in power of 1.5X for an unencapsulated LED.
Date: April 1, 2005
Creator: Koleske, Daniel David; Bogart, Katherine Huderle Andersen; Shul, Randy John; Wendt, Joel Robert; Crawford, Mary Hagerott; Allerman, Andrew Alan et al.
Partner: UNT Libraries Government Documents Department

Final LDRD report : development of advanced UV light emitters and biological agent detection strategies.

Description: We present the results of a three year LDRD project which has focused on the development of novel, compact, ultraviolet solid-state sources and fluorescence-based sensing platforms that apply such devices to the sensing of biological and nuclear materials. We describe our development of 270-280 nm AlGaN-based semiconductor UV LEDs with performance suitable for evaluation in biosensor platforms as well as our development efforts towards the realization of a 340 nm AlGaN-based laser diode technology. We further review our sensor development efforts, including evaluation of the efficacy of using modulated LED excitation and phase sensitive detection techniques for fluorescence detection of bio molecules and uranyl-containing compounds.
Date: December 1, 2007
Creator: Figiel, Jeffrey James; Crawford, Mary Hagerott; Banas, Michael Anthony; Farrow, Darcie; Armstrong, Andrew M.; Serkland, Darwin Keith et al.
Partner: UNT Libraries Government Documents Department

Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications.

Description: We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.
Date: November 1, 2005
Creator: Banas, Michael Anthony; Crawford, Mary Hagerott; Ruby, Douglas Scott; Ross, Michael P.; Nelson, Jeffrey Scott; Allerman, Andrew Alan et al.
Partner: UNT Libraries Government Documents Department

Final LDRD report : science-based solutions to achieve high-performance deep-UV laser diodes.

Description: We present the results of a three year LDRD project that has focused on overcoming major materials roadblocks to achieving AlGaN-based deep-UV laser diodes. We describe our growth approach to achieving AlGaN templates with greater than ten times reduction of threading dislocations which resulted in greater than seven times enhancement of AlGaN quantum well photoluminescence and 15 times increase in electroluminescence from LED test structures. We describe the application of deep-level optical spectroscopy to AlGaN epilayers to quantify deep level energies and densities and further correlate defect properties with AlGaN luminescence efficiency. We further review our development of p-type short period superlattice structures as an approach to mitigate the high acceptor activation energies in AlGaN alloys. Finally, we describe our laser diode fabrication process, highlighting the development of highly vertical and smooth etched laser facets, as well as characterization of resulting laser heterostructures.
Date: December 1, 2011
Creator: Armstrong, Andrew M.; Miller, Mary A.; Crawford, Mary Hagerott; Alessi, Leonard J.; Smith, Michael L.; Henry, Tanya A. et al.
Partner: UNT Libraries Government Documents Department

Final report on LDRD project : outstanding challenges for AlGaInN MOCVD.

Description: The AlGaInN material system is used for virtually all advanced solid state lighting and short wavelength optoelectronic devices. Although metal-organic chemical vapor deposition (MOCVD) has proven to be the workhorse deposition technique, several outstanding scientific and technical challenges remain, which hinder progress and keep RD&A costs high. The three most significant MOCVD challenges are: (1) Accurate temperature measurement; (2) Reliable and reproducible p-doping (Mg); and (3) Low dislocation density GaN material. To address challenge (1) we designed and tested (on reactor mockup) a multiwafer, dual wavelength, emissivity-correcting pyrometer (ECP) for AlGaInN MOCVD. This system simultaneously measures the reflectance (at 405 and 550 nm) and emissivity-corrected temperature for each individual wafer, with the platen signal entirely rejected. To address challenge (2) we measured the MgCp{sub 2} + NH{sub 3} adduct condensation phase diagram from 65-115 C, at typical MOCVD concentrations. Results indicate that it requires temperatures of 80-100 C in order to prevent MgCp{sub 2} + NH{sub 3} adduct condensation. Modification and testing of our research reactor will not be complete until FY2005. A new commercial Veeco reactor was installed in early FY2004, and after qualification growth experiments were conducted to improve the GaN quality using a delayed recovery technique, which addresses challenge (3). Using a delayed recovery technique, the dislocation densities determined from x-ray diffraction were reduced from 2 x 10{sup 9} cm{sup -2} to 4 x 10{sup 8} cm{sup -2}. We have also developed a model to simulate reflectance waveforms for GaN growth on sapphire.
Date: March 1, 2005
Creator: Mitchell, Christine Charlotte; Follstaedt, David Martin; Russell, Michael J.; Cross, Karen Charlene; Wang, George T.; Creighton, James Randall et al.
Partner: UNT Libraries Government Documents Department

III-antimonide/nitride based semiconductors for optoelectronic materials and device studies : LDRD 26518 final report.

Description: The goal of this LDRD was to investigate III-antimonide/nitride based materials for unique semiconductor properties and applications. Previous to this study, lack of basic information concerning these alloys restricted their use in semiconductor devices. Long wavelength emission on GaAs substrates is of critical importance to telecommunication applications for cost reduction and integration into microsystems. Currently InGaAsN, on a GaAs substrate, is being commercially pursued for the important 1.3 micrometer dispersion minima of silica-glass optical fiber; due, in large part, to previous research at Sandia National Laboratories. However, InGaAsN has not shown great promise for 1.55 micrometer emission which is the low-loss window of single mode optical fiber used in transatlantic fiber. Other important applications for the antimonide/nitride based materials include the base junction of an HBT to reduce the operating voltage which is important for wireless communication links, and for improving the efficiency of a multijunction solar cell. We have undertaken the first comprehensive theoretical, experimental and device study of this material with promising results. Theoretical modeling has identified GaAsSbN to be a similar or potentially superior candidate to InGaAsN for long wavelength emission on GaAs. We have confirmed these predictions by producing emission out to 1.66 micrometers and have achieved edge emitting and VCSEL electroluminescence at 1.3 micrometers. We have also done the first study of the transport properties of this material including mobility, electron/hole mass, and exciton reduced mass. This study has increased the understanding of the III-antimonide/nitride materials enough to warrant consideration for all of the target device applications.
Date: December 1, 2003
Creator: Kurtz, Steven Ross; Hargett, Terry W.; Serkland, Darwin Keith; Waldrip, Karen Elizabeth; Modine, Normand Arthur; Klem, John Frederick et al.
Partner: UNT Libraries Government Documents Department

Materials physics and device development for improved efficiency of GaN HEMT high power amplifiers.

Description: GaN-based microwave power amplifiers have been identified as critical components in Sandia's next generation micro-Synthetic-Aperture-Radar (SAR) operating at X-band and Ku-band (10-18 GHz). To miniaturize SAR, GaN-based amplifiers are necessary to replace bulky traveling wave tubes. Specifically, for micro-SAR development, highly reliable GaN high electron mobility transistors (HEMTs), which have delivered a factor of 10 times improvement in power performance compared to GaAs, need to be developed. Despite the great promise of GaN HEMTs, problems associated with nitride materials growth currently limit gain, linearity, power-added-efficiency, reproducibility, and reliability. These material quality issues are primarily due to heteroepitaxial growth of GaN on lattice mismatched substrates. Because SiC provides the best lattice match and thermal conductivity, SiC is currently the substrate of choice for GaN-based microwave amplifiers. Obviously for GaN-based HEMTs to fully realize their tremendous promise, several challenges related to GaN heteroepitaxy on SiC must be solved. For this LDRD, we conducted a concerted effort to resolve materials issues through in-depth research on GaN/AlGaN growth on SiC. Repeatable growth processes were developed which enabled basic studies of these device layers as well as full fabrication of microwave amplifiers. Detailed studies of the GaN and AlGaN growth of SiC were conducted and techniques to measure the structural and electrical properties of the layers were developed. Problems that limit device performance were investigated, including electron traps, dislocations, the quality of semi-insulating GaN, the GaN/AlGaN interface roughness, and surface pinning of the AlGaN gate. Surface charge was reduced by developing silicon nitride passivation. Constant feedback between material properties, physical understanding, and device performance enabled rapid progress which eventually led to the successful fabrication of state of the art HEMT transistors and amplifiers.
Date: December 1, 2005
Creator: Kurtz, Steven Ross; Follstaedt, David Martin; Wright, Alan Francis; Baca, Albert G.; Briggs, Ronald D.; Provencio, Paula Polyak et al.
Partner: UNT Libraries Government Documents Department

Final report on grand challenge LDRD project : a revolution in lighting : building the science and technology base for ultra-efficient solid-state lighting.

Description: This SAND report is the final report on Sandia's Grand Challenge LDRD Project 27328, 'A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-state Lighting.' This project, which for brevity we refer to as the SSL GCLDRD, is considered one of Sandia's most successful GCLDRDs. As a result, this report reviews not only technical highlights, but also the genesis of the idea for Solid-state Lighting (SSL), the initiation of the SSL GCLDRD, and the goals, scope, success metrics, and evolution of the SSL GCLDRD over the course of its life. One way in which the SSL GCLDRD was different from other GCLDRDs was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and other Department of Energy (DOE) national laboratories - to support a national initiative in SSL R&D. Sandia was a major player in publicizing the tremendous energy savings potential of SSL, and in helping to develop, unify and support community consensus for such an initiative. Hence, our activities in this area, discussed in Chapter 6, were substantial: white papers; SSL technology workshops and roadmaps; support for the Optoelectronics Industry Development Association (OIDA), DOE and Senator Bingaman's office; extensive public relations and media activities; and a worldwide SSL community website. Many science and technology advances and breakthroughs were also enabled under this GCLDRD, resulting in: 55 publications; 124 presentations; 10 book chapters and reports; 5 U.S. patent applications including 1 already issued; and 14 patent disclosures not yet applied for. Twenty-six invited talks were given, at prestigious venues such as the American Physical Society Meeting, the Materials Research Society Meeting, the AVS International Symposium, and the Electrochemical Society Meeting. This report contains a summary of these science and technology advances and ...
Date: June 1, 2004
Creator: Copeland, Robert Guild; Mitchell, Christine Charlotte; Follstaedt, David Martin; Lee, Stephen Roger; Shul, Randy John; Fischer, Arthur Joseph et al.
Partner: UNT Libraries Government Documents Department