10 Matching Results

Search Results

Advanced search parameters have been applied.

Erosion Studies of EUVL Candidate Collector Mirror Materials in the Impact Experiment

Description: The IMPACT (Interaction of Materials with charged Particles And Components Testing) experiment at Argonne National Laboratory was used to expose Pd, Ru, and Re-capped Ru candidate EUV light collector mirror materials to conditions similar to extreme-ultraviolet (EUV) lithography source devices, in particular high-energy singly-charged Xe ions. Experiments measured both the time-dependent atomic surface concentration evolution of candidate single-layer mirror (SLM) samples and the Xe+-induced sputtering yield. Elemental surface information was acquired using low-energy ion scattering spectroscopy (LEISS) and sputtering yields were acquired using an in-situ quartz crystal microbalance. Sputtering results show large erosion rates between 0.5 and up to 7.0 for Pd and Ru SLM samples for energies between 500 and 1000 eV of Xe+ irradiation at grazing incidence. Re-capped Ru SLM samples also demonstrated very high sputter yields. Time-dependent erosion rate measurements used with LEISS resulted in a high depth-resolution profile and led to the discovery of ion-induced recoil implantation of oxygen atoms to the Ru mirror surface. High concentration of oxygen throughout the Ru SLM may be detrimental to the reflectivity response of the collector mirror.
Date: January 1, 2005
Creator: Rokusek, D.L.; Allain, J.P.; Hassanein, A. & Nieto, M.
Partner: UNT Libraries Government Documents Department

Differentiating the role of lithium and oxygen in retaining deuterium on lithiated graphite plasma-facing components

Description: Laboratory experiments have been used to investigate the fundamental interactions responsible for deuterium retention in lithiated graphite. Oxygen was found to be present and play a key role in experiments that simulated NSTX lithium conditioning, where the atomic surface concentration can increase to >40% when deuterium retention chemistry is observed. Quantum-classical molecular dynamic simulations elucidated this oxygen-deuterium effect and showed that oxygen retains significantly more deuterium than lithium in a simulated matrix with 20% lithium, 20% oxygen, and 60% carbon. Simulations further show that deuterium retention is even higher when lithium is removed from the matrix. Experiments artificially increased the oxygen content in graphite to approximately 16% and then bombarded with deuterium. XPS showed depletion of the oxygen and no enhanced deuterium retention, thus demonstrating that lithium is essential in retaining the oxygen that thereby retains deuterium.
Date: November 1, 2013
Creator: Taylor, C.N.; Allain, J. P.; Krstic, P. S.; Dadras, J.; Skinner, C. H. & Luitjohan, K. E.
Partner: UNT Libraries Government Documents Department

Overview of Innovative PMI Research on NSTX-U and Associated PMI Facilities at PPPL

Description: Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTXU, the PMI research has received a strong emphasis. With ~ 15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m2 . To support the PMI research, a comprehensive set of PMI diagnostic tools are being implemented. The snow-flake configuration can produce exceptionally high divertor flux expansion of up to ~ 50. Combined with the radiative divertor concept, the snow-flake configuration has reduced the divertor heat flux by an order of magnitude in NSTX. Another area of active PMI investigation is the effect of divertor lithium coating (both in solid and liquid phases). The overall NSTX lithium PFC coating results suggest exciting opportunities for future magnetic confinement research including significant electron energy confinement improvements, Hmode power threshold reduction, the control of Edge Localized Modes (ELMs), and high heat flux handling. To support the NSTX-U/PPPL PMI research, there are also a number of associated PMI facilities implemented at PPPL/Princeton University including the Liquid Lithium R&D facility, Lithium Tokamak Experiment, and Laboratories for Materials Characterization and Surface Chemistry.
Date: September 19, 2012
Creator: Ono, M.; Jaworski, M.; Kaita, R.; Skinner, C. N.; Allain, J. P.; Maingi, R. et al.
Partner: UNT Libraries Government Documents Department

Improvement in Plasma Performance with Lithium Coatings in NSTX

Description: Lithium as a plasma-facing material has attractive features, including a reduction in the recycling of hydrogenic species and the potential for withstanding high heat and neutron fluxes in fusion reactors. Dramatic effects on plasma performance with lithium-coated plasma-facing components (PFCOs) have been demonstrated on many fusion devices, including TFTR, [1] T-11M, [2] and FT-U. [3] Using a liquid-lithium-filled tray as a limiter, the CDX-U device achieved very significant enhancement in the confinement time of ohmically heated plasmas. [4] The recent NSTX experiments reported here have demonstrated, for the first time, significant and recurring benefits of lithium PFC coatings on divertor plasma performance in both L- and H- mode regimes heated by neutral beams.
Date: September 12, 2008
Creator: Kaita, R; Ahn, J -W; Allain, J P; Bell, M G; Bell, R; Boedo, J et al.
Partner: UNT Libraries Government Documents Department

Evaporated Lithium Surface Coatings in NSTX

Description: Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: 1) plasma density reduction as a result of lithium deposition; 2) suppression of ELMs; 3) improvement of energy confinement in a low-triangularity shape; 4) improvement in plasma performance for standard, high-triangularity discharges; 5) reduction of the required HeGDC time between discharges; 6) increased pedestal electron and ion temperature; 7) reduced SOL plasma density; and 8) reduced edge neutral density.
Date: April 9, 2009
Creator: Kugel, H. W.; Mansfield, D.; Maingi, R.; Bel, M. G.; Bell, R. E.; Allain, J. P. et al.
Partner: UNT Libraries Government Documents Department

Lithium Surface Coatings for Improved Plasma Performance in NSTX

Description: NSTX high-power divertor plasma experiments have shown, for the first time, significant and frequent benefits from lithium coatings applied to plasma facing components. Lithium pellet injection on NSTX introduced lithium pellets with masses 1 to 5 mg via He discharges. Lithium coatings have also been applied with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium depositions from a few mg to 1 g have been applied between discharges. Benefits from the lithium coating were sometimes, but not always seen. These improvements sometimes included decreases plasma density, inductive flux consumption, and ELM frequency, and increases in electron temperature, ion temperature, energy confinement and periods of MHD quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.
Date: February 19, 2008
Creator: Kugel, H W; Ahn, J -W; Allain, J P; Bell, R; Boedo, J; Bush, C et al.
Partner: UNT Libraries Government Documents Department

ALPS - advanced limiter-divertor plasma-facing systems.

Description: The Advanced Limiter-divertor Plasma-facing Systems (ALPS) program was initiated in order to evaluate the potential for improved performance and lifetime for plasma-facing systems. The main goal of the program is to demonstrate the advantages of advanced limiter/divertor systems over conventional systems in terms of power density capability, component lifetime, and power conversion efficiency, while providing for safe operation and minimizing impurity concerns for the plasma. Most of the work to date has been applied to free surface liquids. A multi-disciplinary team from several institutions has been organized to address the key issues associated with these systems. The main performance goals for advanced limiters and diverters are a peak heat flux of >50 MW/m{sup 2},elimination of a lifetime limit for erosion, and the ability to extract useful heat at high power conversion efficiency ({approximately}40%). The evaluation of various options is being conducted through a combination of laboratory experiments, modeling of key processes, and conceptual design studies. The current emphasis for the work is on the effects of free surface liquids on plasma edge performance.
Date: September 15, 1999
Creator: Allain, J. P.; Bastasz, R.; Brooks, J. N.; Evans, T.; Hassanein, A.; Luckhardt, S. et al.
Partner: UNT Libraries Government Documents Department

NSTX Plasma Response to Lithium Coated Divertor

Description: NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.
Date: January 21, 2011
Creator: Kugel, H. W.; Bell, M. G.; Allain, J. P.; Bell, R. E.; Ding, S.; Gerhardt, S. P. et al.
Partner: UNT Libraries Government Documents Department