29 Matching Results

Search Results

Advanced search parameters have been applied.

Highly-Efficient Buried-Oxide-Waveguide Laser by selective Oxidation

Description: An edge-emitting buried-oxide waveguide (BOW) laser structure employing lateral selective oxidation of AlGaAs layers above and below the active region for waveguiding and current confinement is presented. This laser configuration has the potential for very small lateral optical mode size and high current confinement and is well suited for integrated optics applications where threshold current and overall efficiency are paramount. Optimization of the waveguide design, oxide layer placement, and bi-parabolic grading of the heterointerfaces on both sides of the AlGaAs oxidation layers has yielded 95% external differential quantum efficiency and 40% wall-plug efficiency from a laser that is very simple to fabricate and does not require epitaxial regrowth of any kind.
Date: February 15, 2000
Creator: VAWTER,GREGORY A.; SPAHN,OLGA B.; ALLERMAN,ANDREW A. & GAO,YING
Partner: UNT Libraries Government Documents Department

Advanced laser diodes for sensing applications

Description: The authors have developed diode lasers for short pulse duration and high peak pulse power in the 0.01--100.0 m pulsewidth regime. A primary goal of the program was producing up to 10 W while maintaining good far-field beam quality and ease of manufacturability for low cost. High peak power, 17 W, picosecond pulses have been achieved by gain switching of flared geometry waveguide lasers and amplifiers. Such high powers area world record for this type of diode laser. The light emission pattern from diode lasers is of critical importance for sensing systems such as range finding and chemical detection. They have developed a new integrated optical beam transformer producing rib-waveguide diode lasers with a symmetric, low divergence, output beam and increased upper power limits for irreversible facet damage.
Date: January 1, 2000
Creator: VAWTER,GREGORY A.; MAR,ALAN; CHOW,WENG W. & ALLERMAN,ANDREW A.
Partner: UNT Libraries Government Documents Department

GaInNAs laser gain

Description: The optical gain spectra for GaInNAs/GaAs quantum wells are computed using a microscopic laser theory. From these spectra, the peak gain and carrier radiative decay rate as functions of carrier density are determined. These dependences allow the study of the lasing threshold current density of GaInNAs/GaAs quantum well structures.
Date: May 23, 2000
Creator: CHOW,WENG W.; JONES,ERIC D.; MODINE,NORMAND A.; KURTZ,STEVEN R. & ALLERMAN,ANDREW A.
Partner: UNT Libraries Government Documents Department

Single transverse mode selectively oxidized vertical cavity lasers

Description: Vertical cavity surface emitting lasers (VCSELs) which operate in multiple transverse optical modes have been rapidly adopted into present data communication applications which rely on multi-mode optical fiber. However, operation only in the fundamental mode is required for free space interconnects and numerous other emerging VCSEL applications. Two device design strategies for obtaining single mode lasing in VCSELs based on mode selective loss or mode selective gain are reviewed and compared. Mode discrimination is attained with the use of a thick tapered oxide aperture positioned at a longitudinal field null. Mode selective gain is achieved by defining a gain aperture within the VCSEL active region to preferentially support the fundamental mode. VCSELs which exhibit greater than 3 mW of single mode output power at 850 nm with mode suppression ratio greater than 30 dB are reported.
Date: April 26, 2000
Creator: CHOQUETTE,KENT D.; GEIB,KENT M.; BRIGGS,RONALD D.; ALLERMAN,ANDREW A. & HINDI,JANA JO
Partner: UNT Libraries Government Documents Department

Effective index model predicts modal frequencies of vertical-cavity lasers

Description: Previously, an effective index optical model was introduced for the analysis of lateral waveguiding effects in vertical-cavity surface-emitting lasers. The authors show that the resultant transverse equation is almost identical to the one typically obtained in the analysis of dielectric waveguide problems, such as a step-index optical fiber. The solution to the transverse equation yields the lateral dependence of the optical field and, as is recognized in this paper, the discrete frequencies of the microcavity modes. As an example, they apply this technique to the analysis of vertical-cavity lasers that contain thin-oxide apertures. The model intuitively explains the experimental data and makes quantitative predictions in good agreement with a highly accurate numerical model.
Date: April 18, 2000
Creator: SERKLAND,DARWIN K.; HADLEY,G. RONALD; CHOQUETTE,KENT D.; GEIB,KENT M. & ALLERMAN,ANDREW A.
Partner: UNT Libraries Government Documents Department

Composite Resonator Surface Emitting Lasers

Description: The authors have developed electrically-injected coupled-resonator vertical-cavity lasers and have studied their novel properties. These monolithically grown coupled-cavity structures have been fabricated with either one active and one passive cavity or with two active cavities. All devices use a selectively oxidized current aperture in the lower cavity, while a proton implant was used in the active-active structures to confine current in the top active cavity. They have demonstrated optical modulation from active-passive devices where the modulation arises from dynamic changes in the coupling between the active and passive cavities. The laser intensity can be modulated by either forward or reverse biasing the passive cavity. They have also observed Q-switched pulses from active-passive devices with pulses as short as 150 ps. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulseshape. They have designed and demonstrated the operation of active-active devices which la.se simultaneously at both longitudinal cavity resonances. Extremely large bistable regions have also been observed in the light-current curves for active-active coupled resonator devices. This bistability can be used for high contrast switching with contrast ratios as high as 100:1. Coupled-resonator vertical-cavity lasers have shown enhanced mode selectivity which has allowed devices to lase with fundamental-mode output powers as high as 5.2 mW.
Date: May 1, 2000
Creator: FISCHER,ARTHUR J.; CHOQUETTE,KENT D.; CHOW,WENG W.; ALLERMAN,ANDREW A. & GEIB,KENT M.
Partner: UNT Libraries Government Documents Department

Minority carrier diffusion, defects, and localization in InGaAsN with 2% nitrogen

Description: Electron and hole transport in compensated, InGaAsN ({approx} 2% N) are examined through Hall mobility, photoconductivity, and solar cell photoresponse measurements. Short minority carrier diffusion lengths, photoconductive-response spectra, and doping dependent, thermally activated Hall mobilities reveal a broad distribution of localized states. At this stage of development, lateral carrier transport appears to be limited by large scale (>> mean free path) material inhomogeneities, not a random alloy-induced mobility edge.
Date: May 3, 2000
Creator: Kurtz, Steven R.; Allerman, Andrew A.; Seager, Carleton H.; Sieg, Robert M. & Jones, Eric D.
Partner: UNT Libraries Government Documents Department

Comparison of fabrication approaches for selectively oxidized VCSEL arrays

Description: The impressive performance improvements of laterally oxidized VCSELs come at the expense of increased fabrication complexity for 2-dimensional arrays. Since the epitaxial layers to be wet-thermally oxidized must be exposed, non-planarity can be an issue. This is particularly important in that electrical contact to both the anode and cathode of the diode must be brought out to a package. They have investigated four fabrication sequences suitable for the fabrication of 2-dimensional VCSEL arrays. These techniques include: mesa etched polymer planarized, mesa etched bridge contacted, mesa etched oxide isolated (where the electrical trace is isolated from the substrate during the oxidation) and oxide/implant isolation (oxidation through small via holes) all of which result in VCSELs with outstanding performance. The suitability of these processes for manufacturing are assessed relative to oxidation uniformity, device capacitance, and structural ruggedness for packaging.
Date: April 18, 2000
Creator: GEIB,KENT M.; CHOQUETTE,KENT D.; ALLERMAN,ANDREW A.; BRIGGS,RONALD D. & HINDI,JANA JO
Partner: UNT Libraries Government Documents Department

Q-switched operation of a coupled-resonator vertical-cavity laser diode

Description: The authors report Q-switched operation from an electrically-injected monolithic coupled-resonator structure which consists of an active cavity with InGaAs quantum wells optically coupled to a passive cavity. The passive cavity contains a bulk GaAs region which is reverse-biased to provide variable absorption at the lasing wavelength of 990 nm. Cavity coupling is utilized to effect large changes in output intensity with only very small changes in passive cavity absorption. The device is shown to produce pulses as short as 150 ps at repetition rates as high 4 GHz. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulse shape. Small-signal frequency response measurements also show a transition from a slower ({approximately} 300 MHZ) forward-biased modulation regime to a faster ({approximately} 2 GHz) modulation regime under reverse-bias operation.
Date: February 8, 2000
Creator: FISCHER,ARTHUR J.; CHOW,WENG W.; CHOQUETTE,KENT D.; ALLERMAN,ANDREW A. & GEIB,KENT M.
Partner: UNT Libraries Government Documents Department

Bistable Output from a Coupled-Resonator Vertical-Cavity Laser Diode

Description: The authors report a monolithic coupled-resonator vertical-cavity laser with an ion-implanted top cavity and a selectively oxidized bottom cavity which exhibits bistable behavior in the light output versus injection current. Large bistability regions over current ranges as wide as 18 mA have been observed with on/off contrast ratios of greater than 20 dB. The position and width of the bistability region can be varied by changing the bias to the top cavity. Switching between on and off states can be accomplished with changes as small as 250 {micro}W to the electrical power applied to the top cavity. Theoretical analysis suggests that the bistable behavior is the response of the nonlinear susceptibility in the top cavity to the changes in the bottom intracavity laser intensity as the bottom cavity reaches the thermal rollover point.
Date: July 20, 2000
Creator: FISCHER,ARTHUR J.; CHOQUETTE,KENT D.; CHOW,WENG W.; ALLERMAN,ANDREW A. & GEIB,KENT M.
Partner: UNT Libraries Government Documents Department

Two-Element Phased Array of Anti-Guided Vertical-Cavity Lasers

Description: We demonstrate for the first time anti-guided coupling of two adjacent vertical-cavity surface-emitting lasers (VCSEL's), obtaining a 1-by-2 phase-locked array at 869 nm. The lateral index modification required for anti-guiding is achieved by a patterned 3-rim etch performed between two epitaxial growths. In contrast with prior evanescently coupled VCSEL's, adjacent anti-guided VCSEL's can emit in-phase and produce a single on-axis lobe in the far field. Greater than 2 mW of in-phase output power is demonstrated with two VCSEL's separated by 8 {micro}m. Moreover, phase locking of two VCSEL's separated by 20 {micro}m is observed, indicating the possibility of a new class of optical circuits based upon VCSEL's that interact horizontally and emit vertically.
Date: September 27, 1999
Creator: ALLERMAN, ANDREW A.; CHOQUETTE, KENT D.; GEIB, KENT M.; HADLEY, G. RONALD & SERKLAND, DARWIN K.
Partner: UNT Libraries Government Documents Department

The Growth of InGaAsN for High Efficiency Solar Cells by Metalorganic Chemical Vapor Deposition

Description: InGaAsN alloys are a promising material for increasing the efficiency of multi-junction solar cells now used for satellite power systems. However, the growth of these dilute N containing alloys has been challenging with further improvements in material quality needed before the solar cell higher efficiencies are realized. Nitrogen/V ratios exceeding 0.981 resulted in lower N incorporation and poor surface morphologies. The growth rate was found to depend on not only the total group III transport for a fixed N/V ratio but also on the N/V ratio. Carbon tetrachloride and dimethylzinc were effective for p-type doping. Disilane was not an effective n-type dopant while SiCl4 did result in n-type material but only a narrow range of electron concentrations (2-5e17cm{sup -3}) were achieved.
Date: September 16, 1999
Creator: ALLERMAN,ANDREW A.; BANKS,JAMES C.; GEE,JAMES M.; JONES,ERIC D. & KURTZ,STEVEN R.
Partner: UNT Libraries Government Documents Department

Photoluminescence-linewidth-derived exciton mass for InGaAsN alloys

Description: The authors report a measurement of the variation of the value of the linewidth of an excitonic transition in InGaAsN alloys (1 and 2% nitrogen) as a function of hydrostatic pressure using photoluminescence spectroscopy. The samples were grown by metal-organic chemical vapor deposition and the photoluminescence measurements were performed a 4K. The authors find that the value of the excitonic linewidth increases as a function of pressure until about 100 kbars after which it tends to saturate. This change in the excitonic linewidth is used to derive the pressure variation of the reduced mass of the exciton using a theoretical formalism which is based on the premise that the broadening of the excitonic transition is caused primarily by compositional fluctuations in a completely disordered alloy. The variation of the excitonic reduced mass thus derived is compared with that recently determined using a first-principles band structure calculation based on local density approximation.
Date: January 27, 2000
Creator: Jones, Eric D.; Allerman, Andrew A.; Kurtz, Steven R.; Modine, Normand A.; Bajaj, K. K.; Tozer, S. T. et al.
Partner: UNT Libraries Government Documents Department

Photonics Integration Devices and Technologies

Description: We have used selective AlGaAs oxidation, dry-etching, and high-gain semiconductor laser simulation to create new in-plane lasers with interconnecting passive waveguides for use in high-density photonic circuits and future integration of photonics with electronics. Selective oxidation and doping of semiconductor heterostructures have made vertical cavity surface emitting lasers (VCSELs) into the world's most efficient low-power lasers. We apply oxidation technology to improve edge-emitting lasers and photonic-crystal waveguides, making them suitable for monolithic integrated microsystems. Two types of lasers are investigated: (1) a ridge laser with resonant coupling to an output waveguide; (2) a selectively-oxidized laser with a low active volume and potentially sub-milliAmp threshold current. Emphasis is on development of high-performance lasers suited for monolithic integration with photonic circuit elements.
Date: April 1, 2001
Creator: VAWTER, GREGORY A.; LIN, SHAWN-YU; SULLIVAN, CHARLES T.; ZUBRZYCKI, WALTER J.; CHOW, WENG W.; ALLERMAN, ANDREW A. et al.
Partner: UNT Libraries Government Documents Department

Time-resolved photoluminescence studies of In{sub x}Ga{sub 1{minus}x}As{sub 1{minus}y}N{sub y}

Description: Time-resolved photoluminescence spectroscopy has been used to investigate carrier decay dynamics in a In{sub x}Ga{sub 1{minus}x}As{sub 1{minus}y}N{sub y} (x {approximately} 0.03, y {approximately} 0.01) epilayer grown on GaAs by metal organic chemical vapor deposition. Time-resolved photoluminescence (PL) measurements, performed for various excitation intensities and sample temperatures, indicate that the broad PL emission at low temperature is dominated by localized exciton recombination. Lifetimes in the range of 0.07--0.34 ns are measured; these photoluminescence lifetimes are significantly shorter than corresponding values obtained for GaAs. In particular, the authors observe an emission energy dependence of the decay lifetime at 10 K, whereby the lifetime decreases with increasing emission energy across the PL spectrum. This behavior is characteristic of a distribution of localized states, which arises from alloy fluctuations.
Date: January 27, 2000
Creator: MAIR,R.A.; LIN,J.Y.; JIANG,H.X.; JONES,ERIC D.; ALLERMAN,ANDREW A. & KURTZ,STEVEN R.
Partner: UNT Libraries Government Documents Department

Deep Levels in p- and n-type InGaAsN for High Efficiency Multi-Junction III-V Solar Cells

Description: Red Teaming is an advanced form of assessment that can be used to identify weaknesses in a variety of cyber systems. it is especially beneficial when the target system is still in development when designers can readily affect improvements. This paper discusses the red team analysis process and the author's experiences applying this process to five selected Information Technology Office (ITO) projects. Some detail of the overall methodology, summary results from the five projects, and lessons learned are contained within this paper.
Date: November 11, 1999
Creator: ALLERMAN,ANDREW A.; JONES,ERIC D.; KAPLAR,ROBERT J.; KURTZ,STEVEN R.; KWON,DAEWON & RINGEL,STEVEN A.
Partner: UNT Libraries Government Documents Department

InGaAsN: A Novel Material for High-Efficiency Solar Cells and Advanced Photonic Devices

Description: This report represents the completion of a 6 month Laboratory-Directed Research and Development (LDRD) program that focused on research and development of novel compound semiconductor, InGaAsN. This project seeks to rapidly assess the potential of InGaAsN for improved high-efficiency photovoltaic. Due to the short time scale, the project focused on quickly investigating the range of attainable compositions and bandgaps while identifying possible material limitations for photovoltaic devices. InGaAsN is a new semiconductor alloy system with the remarkable property that the inclusion of only 2% nitrogen reduces the bandgap by more than 30%. In order to help understand the physical origin of this extreme deviation from the typically observed nearly linear dependence of alloy properties on concentration, we have investigated the pressure dependence of the excited state energies using both experimental and theoretical methods. We report measurements of the low temperature photoluminescence energy of the material for pressures between ambient and 110 kbar. We describe a simple, density-functional-theory-based approach to calculating the pressure dependence of low lying excitation energies for low concentration alloys. The theoretically predicted pressure dependence of the bandgap is in excellent agreement with the experimental data. Based on the results of our calculations, we suggest an explanation for the strongly non-linear pressure dependence of the bandgap that, surprisingly, does not involve a nitrogen impurity band. Additionally, conduction-band mass measurements, measured by three different techniques, will be described and finally, the magnetoluminescence determined pressure coefficient for the conduction-band mass is measured. The design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga{sub 0.93}As{sub 0.98}N{sub 0.02} solar cell, with 1.0 eV bandgap, lattice matched to GaAs is described. The hole diffusion length in annealed, n-type InGaAsN is 0.6-0.8 pm, and solar cell internal quantum efficiencies >70% are obtained. Optical studies indicate that defects or impurities, from doping ...
Date: July 1, 1999
Creator: Allerman, Andrew A.; Follstaedt, David M.; Gee, James M.; Jones, Eric D.; Kurtz, Steven R. & Modine, Norman A.
Partner: UNT Libraries Government Documents Department

Effective masses for small nitrogen concentrations in InGaAsN alloys on GaAs

Description: The variation of the value of the linewidth of an excitonic transition in InGaAsN alloys (1% and 2% nitrogen) as a function of hydrostatic pressure using photoluminescence spectroscopy is studied at 4K. The excitonic linewidth increases as a function of pressure until about 100 kbar after which it tends to saturate. This pressure dependent excitonic linewidth is used to derive the pressure variation of the exciton reduced mass using a theoretical formalism based on the premise that the broadening of the excitonic transition is caused primarily by compositional fluctuations in a completely disordered alloy. The linewidth derived ambient pressure masses are compared and found to be in agreement with other mass measurements. The variation of this derived mass is compared with the results from a nearly first-principles approach in which calculations based on the local density approximation to the Kohn-Sham density functional theory are corrected using a small amount of experimental input.
Date: May 11, 2000
Creator: JONES,ERIC D.; ALLERMAN,ANDREW A.; KURTZ,STEVEN R.; FRITZ,IAN J.; MODINE,NORMAND A.; SIEG,ROBERT M. et al.
Partner: UNT Libraries Government Documents Department

Integrated optical systems for excitation delivery and broadband detection in micro-fluidic electrochromatography

Description: The authors have designed and assembled two generations of integrated micro-optical systems that deliver pump light and detect broadband laser-induced fluorescence in micro-fluidic chemical separation systems employing electrochromatography. The goal is to maintain the sensitivity attainable with larger, tabletop machines while decreasing package size and increasing throughput (by decreasing the required chemical volume). One type of micro-optical system uses vertical-cavity surface-emitting lasers (VCSELs) as the excitation source. Light from the VCSELs is relayed with four-level surface relief diffractive optical elements (DOEs) and delivered to the chemical volume through substrate-mode propagation. Indirect fluorescence from dye-quenched chemical species is collected and collimated with a high numerical aperture DOE. A filter blocks the excitation wavelength, and the resulting signal is detected as the chemical separation proceeds. Variations of this original design include changing the combination of reflective and transmissive DOEs and optimizing the high numerical aperture DOE with a rotationally symmetric iterative discrete on-axis algorithm. The authors will discuss the results of these implemented optimizations.
Date: March 15, 2000
Creator: KEMME,SHANALYN A.; WARREN,MIAL E.; SWEATT,WILLIAM C.; WENDT,JOEL R.; BAILEY,CHRISTOPHER G.; MATZKE,CAROLYN M. et al.
Partner: UNT Libraries Government Documents Department

Room temperature continuous wave InGaAsN quantum well vertical cavity lasers emitting at 1.3 um

Description: Selectively oxidized vertical cavity lasers emitting at 1294 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave at and above room temperature. The lasers employ two n-type Al{sub 0.94}Ga{sub 0.06}As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the optical cavity, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55 C. These lasers exhibit the longest wavelength reported to date for vertical cavity surface emitting lasers grown on GaAs substrates.
Date: June 5, 2000
Creator: CHOQUETTE,KENT D.; KLEM,JOHN F.; FISCHER,ARTHUR J.; SPAHN,OLGA B.; ALLERMAN,ANDREW A.; FRITZ,IAN J. et al.
Partner: UNT Libraries Government Documents Department