24 Matching Results

Search Results

Advanced search parameters have been applied.

Monte Carlo simulations of phosphate polyhedron connectivity in glasses

Description: Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.
Date: January 1, 2000
Creator: ALAM,TODD M.
Partner: UNT Libraries Government Documents Department

Molecular dynamic simulations, {sup 6}Li solid state NMR and ultraphosphate glasses

Description: The author's laboratory continues to use NMR to investigate the structure and dynamics in amorphous materials, including the local structure of ultraphosphate glasses. Changes in the alkali environment in these phosphate glasses as a function of modifier concentration has recently been probed using {sup 6}Li and {sup 23}Na solid state NMR. Molecular dynamic (MD) simulations have also been performed in an attempt to gain additional insight into the variations of the local structure. Interestingly, although there are distinct variations in the Li coordination number as well as the Li-O bond lengths in the MD simulations (with a minimum or maximum in these parameters near the 20% Li{sub 2}O concentration), a linear change in the {sup 6}Li NMR chemical shift is observed between 5 and 50% Li{sub 2}O mole fraction. One would expect that such variations should be observable in the NMR chemical shift. In an attempt to understand this behavior the author has performed empirical calculation of the {sup 6}Li NMR chemical shift directly from the structures obtained in the MD simulations. It has been argued that the NMR chemical shift of alkali species can be related to a chemical shift parameter A, where A is defined as the summation of the shift contributions for all the oxygens located within the first (and possibly the second) coordination sphere around the cation. For the present case of Li phosphate glasses, the chemical shift correlates directly to the bond valence of the coordinating oxygen.
Date: May 1, 2000
Creator: ALAM,TODD M.
Partner: UNT Libraries Government Documents Department

Monte Carlo Simulations of Phosphate Polyhedron Connectivity in Glasses

Description: Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.
Date: December 21, 1999
Creator: ALAM,TODD M.
Partner: UNT Libraries Government Documents Department

Quantitative Analysis of Microstructure in Polysiloxanes Using High Resolution Si29 NMR Spectroscopy: Investigation of Lot Variability in the LVM97 and HVM97 PDMS/PDPS Copolymers

Description: The quantitative analysis of microstructure and sequence distribution in polysiloxane copolymers using high-resolution solution {sup 29}Si NMR is reported. Copolymers containing dimethylsiloxane (DMS) and diphenysiloxane (DPS) monomer units prepared with either high vinyl content (HVM) or low vinyl content (LVM) were analyzed. The average run length (R{sub exp}), the number average sequence length (l{sub A}, l{sub B}), along with the various linkage probabilities (p{sub AA}, p{sub AB}, p{sub BA}, and p{sub BB}) were determined for different production lots of the LVM97 and HVM97 samples to address the lot variability of microstructure in these materials.
Date: November 1, 2002
Creator: ALAM, TODD M.
Partner: UNT Libraries Government Documents Department

Chemometric Analysis of Nuclear Magnetic Resonance Spectroscopy Data

Description: Chemometric analysis of nuclear magnetic resonance (NMR) spectroscopy has increased dramatically in recent years. A variety of different chemometric techniques have been applied to a wide range of problems in food, agricultural, medical, process and industrial systems. This article gives a brief review of chemometric analysis of NMR spectral data, including a summary of the types of mixtures and experiments analyzed with chemometric techniques. Common experimental problems encountered during the chemometric analysis of NMR data are also discussed.
Date: July 20, 2000
Creator: ALAM,TODD M. & ALAM,M. KATHLEEN
Partner: UNT Libraries Government Documents Department

Empirical Calculations of {sup 29}Si NMR Chemical Shielding Tensors: A Partial Charge Model Investigation of Hydrolysis in Organically Modified Alkoxy Silanes

Description: Organically modified alkoxy silanes play an important role in tailoring different properties of silica produced by the sol-gel method. Changes in the size and functionality of the organic group allows control of both physical and chemical properties of the resulting gel, with the kinetics of the polymerization process playing an important role in the design of new siloxane materials. High resolution {sup 29}Si NMR has proven to be valuable tool for monitoring the polymerization reaction, and has been used to investigate a variety of organically modified alkoxy silane systems.
Date: August 5, 1999
Creator: Alam, Todd M. & Henry, Marc
Partner: UNT Libraries Government Documents Department

Bruker AMX Y Channel Heteronuclear Decoupling Using a Linear Amplifier

Description: Under both static and common MAS conditions (< 15 kHz) the question of residual X-Y heteronuclear decoupling can become a complicating factor in the analysis of various NMR results. In our lab the impact of {sup 31}P-{sup 23}Na dipolar coupling on the observed {sup 23}Na M{sub 2} relaxation for a series of sodium phosphate glasses was recently investigated by employing continuous wave {sup 31}P decoupling during the entire pulse sequence. Initially these efforts were complicate by the inability to provide a gating pulse during the data acquisition using the standard Bruker nomenclature, go=2, for the acquisition loop. A pulse sequence to overcome these restrictions is given below. Our AMX400 instrument is configured with a 3 channel MCI, but utilizes a linear AMT amplifier on the 3rd channel (requiring gating pulse via the C4 program call during the entire time it is on). The standard acquisition loop has been replaced by direct adc and aq commands for data acquisition. Unlike the go=2 statement which does not allow a C4 gating command to be included, these individual acquisition commands can all include distinct C4 gating.
Date: August 2, 1999
Creator: Alam, Todd M. & Lang, David P.
Partner: UNT Libraries Government Documents Department

Multivariate Analysis and Quantitation of (17)O-NMR in Primary Alcohol Mixtures

Description: Multivariate techniques were used to address the quantification of {sup 17}O-NMR (nuclear magnetic resonance) spectra for a series of primary alcohol mixtures. Due to highly overlapping resonances, quantitative spectral evaluation using standard integration and deconvolution techniques proved difficult. Multivariate evaluation of the {sup 17}O-NMR spectral data obtained for 26 mixtures of five primary alcohols demonstrated that obtaining information about spectral overlap and interferences allowed the development of more accurate models. Initial partial least squares (PLS) models developed for the {sup 17}O-NMR data collected from the primary alcohol mixtures resulted in very poor precision, with signal overlap between the different chemical species suspected of being the primary contributor to the error. To directly evaluate the question of spectral overlap in these alcohol mixtures, net analyte signal (NAS) analyses were performed. The NAS results indicate that alcohols with similar chain lengths produced severely overlapping {sup 17}O-NMR resonances. Grouping the alcohols based on chain length allowed more accurate and robust calibration models to be developed.
Date: July 1, 1999
Creator: Alam, M.Kathleen & Alam, Todd M.
Partner: UNT Libraries Government Documents Department

Relaxation nuclear magnetic resonance imaging (R-NMRI) of desiccation in M9787 silicone pads.

Description: The production and aging of silicone materials remains an important issue in the weapons stockpile due to their utilization in a wide variety of components and systems within the stockpile. Changes in the physical characteristics of silicone materials due to long term desiccation has been identified as one of the major aging effects observed in silicone pad components. Here we report relaxation nuclear magnetic resonance imaging (R-NMRI) spectroscopy characterization of the silica-filled and unfilled polydimethylsiloxane (PDMS) and polydiphenylsiloxane (PDPS) copolymer (M9787) silicone pads within desiccating environments. These studies were directed at providing additional details about the heterogeneity of the desiccation process. Uniform NMR spin-spin relaxation time (T2) images were observed across the pad thickness indicating that the drying process is approximately uniform, and that the desiccation of the M9787 silicone pad is not a H2O diffusion limited process. In a P2O5 desiccation environment, significant reduction of T2 was observed for the silica-filled and unfilled M9787 silicone pad for desiccation up to 225 days. A very small reduction in T2 was observed for the unfilled copolymer between 225 and 487 days. The increase in relative stiffness with desiccation was found to be higher for the unfilled copolymer. These R-NMRI results are correlated to local changes in the modulus of the material
Date: June 1, 2004
Creator: Alam, Todd M; Cherry, Brian Ray & Alam, Mary Kathleen
Partner: UNT Libraries Government Documents Department

Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing investigations of connectivity in sodium aluminophosphate glasses

Description: Solid state {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na MAS NMR dipolar dephasing experiments have been used to investigate the spatial distribution of aluminum and sodium cations with respect to the phosphate backbone for a series of sodium aluminophosphate glasses, xAl{sub 2}O{sub 3}{center_dot}50Na{sub 2}O{center_dot}(50{minus}x)P{sub 2}O{sub 5} (0{le} x {le} 17.5). From the {sup 31}P/{sup 27}Al and {sup 31}P/{sup 23}Na connectivity data gathered, information about the medium range order in these glasses is obtained. The expanded connectivity data allows for better identification and interpretation of the new resonances observed in the {sup 31}P MAS NMR spectra with the addition of alumina. The results of the dipolar dephasing experiments show that the sodium-phosphate distribution remains relatively unchanged for the glass series, and that the addition of aluminum occurs primarily through the depolymerization of the phosphate tetrahedral backbone.
Date: May 1, 2000
Creator: LANG,DAVID P.; ALAM,TODD M. & BENCOE,DENISE N.
Partner: UNT Libraries Government Documents Department

Molecular dynamic simulations of the lithium coordination environment in phosphate glasses

Description: A molecular dynamics (MD) study of the lithium ultraphosphate glass series, xLi{sub 2}O{center_dot}(1{minus}x)P{sub 2}O{sub 5} (0 {le} x < 0.5) was used to investigate the changes in the Li environment with increasing modifier concentration. The results from the MD simulations indicate that no major structural variations in the Li coordination environment are observed. Changes in the type of oxygen coordinated to the modifier are observed and correlate with the T{sub g} minimum. Additionally, changes in the number of shared phosphorus vertices are observed with increasing modifier concentration, in support of recent models involving the role of the modifier in the extended range structure of phosphate glasses. Empirical calculations of the {sup 6}Li NMR chemical shifts directly from the MD simulation structures is also reported and compared to recent experimental solid-state NMR results.
Date: June 7, 2000
Creator: ALAM,TODD M.; LIANG,JIANJIE & CYGAN,RANDALL T.
Partner: UNT Libraries Government Documents Department

Molecular Dynamics Simulation of the Structure and Properties of Lithium Phosphate Glasses

Description: A new forcefield model was developed for modeling phosphate materials that have many important applications in the electronics and biomedical industries. Molecular dynamics simulations of a series of lithium phosphate glass compositions were performed using the new forcefield model. A high concentration of three member rings (P{sub 3}O{sub 3}) was found in the glass of intermediate composition (0.2 Li{sub 2}O {center_dot} 0.8 P{sub 2}O{sub 5}) that corresponds to the minimum in the glass transition temperature curve for the compositional series.
Date: July 20, 1999
Creator: Liang, Jian-jie; Cygan, Randall T. & Alam, Todd M.
Partner: UNT Libraries Government Documents Department

Structural diversity in lithium aryloxides, Part 2

Description: A series of arylalcohols [H-OAr where OAr = OC{sub 6}H{sub 5} (OPh), OC{sub 6}H{sub 4}(2-Me) (oMP), OC{sub 6}H{sub 3}(2,6-Me){sub 2} (DMP), OC{sub 6}H{sub 4}(2-Pr{prime}) (oPP), OC{sub 6}H{sub 3}(2,6-Pr{prime}){sub 2} (DIP), OC{sub 6}H{sub 4}(2-Bu{prime}) (oBP), OC{sub 6}H{sub 3}(2,6-Bu{prime}){sub 2} (DBP) where Me = CH{sub 3}, Pr{prime} = CHMe{sub 2}, and Bu{prime} = CMe{sub 3}] were reacted with LiN(SiMe{sub 3}){sub 2} in pyridine (py) to generate the appropriate ``Li(OAr)(py){sub x}'' complex. The resultant products were characterized by single crystal X-ray diffraction as: [Li(OPh)(py){sub 2}]{sub 2} (1), [Li(oMP)(py){sub 2}]{sub 2} (2), [Li(DMP)(py){sub 2}]{sub 2} (3), [Li(oPP)(py){sub 2}]{sub 2} (4), [Li(DIP)(py){sub 2}]{sub 2} (5), [Li(oBP)(py){sub 2}]{sub 2} (6), and [Li(DBP)(py)]{sub 2} (7). Compounds 1--6 adopt a dinuclear, edge-shared tetrahedral complex. For 7, due to the steric crowding of the DBP ligand, only one py is coordinated yielding a dinuclear fused trigonal planar arrangement. Two additional structure types were also characterized for the DIP ligand as [Li(DIP)(H-DIP)(py)]{sub 2} (5b) and [Li{sub 2}(DIP){sub 2}(py){sub 3}] (5c). {sup 6,7}Li and {sup 13}C NMR solid state MAS spectroscopy indicated that the bulk powder was consistent with the crystalline material. Solution state NMR spectroscopy revealed a symmetric molecule existed in solution for 1--7.
Date: June 6, 2000
Creator: BOYLE,TIMOTHY J.; PEDROTTY,DAWN M.; ALAM,TODD M.; VICK,SARA C. & RODRIGUEZ,MARK A.
Partner: UNT Libraries Government Documents Department

{sup 17}O NMR investigation of oxidative degradation in polymers under gamma-irradiation

Description: The {gamma}-irradiated-oxidation of pentacontane (C{sub 50}H{sub 102}) and the polymer polyisoprene was investigated as a function of oxidation level using {sup 17}O nuclear magnetic resonance (NMR) spectroscopy. It is demonstrated that by using {sup 17}O labeled O{sub 2} gas during the {gamma}-irradiation process, details about the oxidative degradation mechanisms can be directly obtained from the analysis of the {sup 17}O NMR spectra. Production of carboxylic acids is the primary oxygen-containing functionality during the oxidation of pentacontane, while ethers and alcohols are the dominant oxidation product observed for polyisoprene. The formation of ester species during the oxidation process is very minor for both materials, with water also being produced in significant amounts during the radiolytic oxidation of polyisoprene. The ability to focus on the oxidative component of the degradation process using {sup 17}O NMR spectroscopy demonstrates the selectivity of this technique over more conventional approaches.
Date: March 8, 2000
Creator: ALAM,TODD M.; CELINA,MATHIAS C.; ASSINK,ROGER A.; CLOUGH,ROGER LEE & GILLEN,KENNETH T.
Partner: UNT Libraries Government Documents Department

Fuel traps: mapping stability via water association.

Description: Hydrogen storage is a key enabling technology required for attaining a hydrogen-based economy. Fundamental research can reveal the underlying principles controlling hydrogen uptake and release by storage materials, and also aid in characterizing and designing novel storage materials. New ideas for hydrogen storage materials come from exploiting the properties of hydrophobic hydration, which refers to water s ability to stabilize, by its mode of association, specific structures under specific conditions. Although hydrogen was always considered too small to support the formation of solid clathrate hydrate structures, exciting new experiments show that water traps hydrogen molecules at conditions of low temperatures and moderate pressures. Hydrogen release is accomplished by simple warming. While these experiments lend credibility to the idea that water could form an environmentally attractive alternative storage compound for hydrogen fuel, which would advance our nation s goals of attaining a hydrogen-based economy, much work is yet required to understand and realize the full potential of clathrate hydrates for hydrogen storage. Here we undertake theoretical studies of hydrogen in water to establish a firm foundation for predictive work on clathrate hydrate H{sub 2} storage capabilities. Using molecular simulation and statistical mechanical theories based in part on quantum mechanical descriptions of molecular interactions, we characterize the interactions between hydrogen and liquid water in terms of structural and thermodynamic properties. In the process we validate classical force field models of hydrogen in water and discover new features of hydrophobic hydration that impact problems in both energy technology and biology. Finally, we predict hydrogen occupancy in the small and large cages of hydrogen clathrate hydrates, a property unresolved by previous experimental and theoretical work.
Date: March 1, 2007
Creator: Rempe, Susan L.; Clawson, Jacalyn S.; Greathouse, Jeffery A.; Alam, Todd M; Leung, Kevin; Varma, Sameer et al.
Partner: UNT Libraries Government Documents Department

Analysis of Hydroperoxides in solid Polyethylene by NMR and EPR Spectroscopy

Description: The authors have shown that the hydroperoxide species in {gamma}-irradiated {sup 13}C-polyethylene can be directly observed by {sup 13}C MAS NMR spectroscopy. The experiment was performed without the need for special sample preparation such as chemical derivatization or dissolution. Annealing experiments were employed to study the thermal decomposition of the hydroperoxide species and to measure an activation energy of 98 kJ/mol. EPR spectroscopy suggests that residual polyenyl and alkylperoxy radicals are predominantly trapped in interracial or crystalline regions, while the peroxy radicals observed after UV-photolysis of hydroperoxides are in amorphous regions.
Date: June 12, 2000
Creator: ASSINK,ROGER A.; CELINA,MATHIAS C.; DUNBAR,TIMOTHY D.; ALAM,TODD M.; CLOUGH,ROGER LEE & GILLEN,KENNETH T.
Partner: UNT Libraries Government Documents Department

{sup 203,205}Tl NMR Studies of Crystallographically Characterized Thallium Alkoxides. X-Ray Structures of [Tl(OCH{sub 2}CH{sub 3})]4 and [Tl(OAr)]{sub infinity} where OAr = OC{sub 6}H{sub 3}(Me){sub 2}-2,6 and OC{sub 6}H{sub 3}(Pr{sup i}){sub 2}-2,6

Description: [Tl(OCH{sub 2}CH{sub 3})]{sub 4}, (1) was reacted with excess HOR to prepare a series of [Tl(OR)]{sub n} where OR= OCHMe{sub 2} (2, n = 4), OCMe{sub 3} (3, n = 4), OCH{sub 2}CMe{sub 3} (4, n = 4), OC{sub 6}H{sub 3}(Me){sub 2}-2,6 (5, n = {infinity}), and OC{sub 6}H{sub 3}(Pr{sup i}){sub 2}-2,6 (6, n = {infinity}). Single crystal X-ray diffraction was used to determine the structure of compounds ligated by more sterically demanding ligands. Compound 4 was found to adopt a cubane structure, while 5 and 6 formed linear polymeric structures. These compounds were additionally characterized by {sup 203,205}Tl solution and {sup 205}Tl solid state NMR. Compounds 1--4 were found to remain intact in solution while the polymeric species, 5 and 6, appeared to be fluxional. While variations in the solution and solid state structures for the tetrameric [Tl(OR)]{sub 4} and polymeric [Tl(OAr)]{sub {infinity}} may be influenced by the steric hindrance of their respective ligands, the covalency of the species is believed to be more an effect of the parent alcohol acidity.
Date: July 25, 2000
Creator: ZECHMANN,CECILIA A.; BOYLE,TIMOTHY J.; PEDROTTY,DAWN M.; ALAM,TODD M.; LANG,DAVID P. & SCOTT,BRIAN L.
Partner: UNT Libraries Government Documents Department

Investigation of Sodium Distribution in Phosphate Glasses Using Spin-Echo {sup 23}Na NMR

Description: The spatial arrangement of sodium cations for a series of sodium phosphate glasses, xNa{sub 2}O(100-x)P{sub 2}O{sub 5} (x<55), were investigated using {sup 23}Na spin-echo NMR spectroscopy. The spin-echo decay rate is a function of the Na-Na homonuclear dipolar coupling and is related to the spatial proximity of neighboring Na nuclei. The spin-echo decay rate in these sodium phosphate glasses increases non-linearly with higher sodium number density, and thus provides a measure of the Na-Na extended range order. The results of these {sup 23}Na NMR experiments are discussed within the context of several structural models, including a decimated crystal lattice model, cubic dilation lattice model, a hard sphere (HS) random distribution model and a pair-wise cluster hard sphere model. While the experimental {sup 23}Na spin-echo M{sub 2} are described adequately by both the decimated lattice and the random HS model, it is demonstrated that the slight non-linear behavior of M{sub 2} as a function of sodium number density is more correctly described by the random distribution in the HS model. At low sodium number densities the experimental M{sub 2} is inconsistent with models incorporating Na-Na clustering. The ability to distinguish between Na-Na clusters and non-clustered distributions becomes more difficult at higher sodium concentrations.
Date: September 16, 1999
Creator: ALAM, TODD M.; BOYLE, TIMOTHY J.; BROW, RICHARD K.; CLICK, CAROL C.; CONZONE, SAM; McLAUGHLIN, JAY et al.
Partner: UNT Libraries Government Documents Department

Analysis of Hydroperoxides in Solid Polyethylene by MAS (13)C NMR and EPR

Description: {sup 13}C-enriched polyethylene was subjected to {gamma}-irradiation in the presence of air at 25 and 80 C for total doses ranging from 71 to 355 kGy. Significant quantities of hydroperoxides were detected in the 25 C irradiated sample by {sup 13}C magic angle spinning NMR spectroscopy. This method of detection was performed on the solid polymer and required no chemical derivatization or addition of solvent. The chemical stability and subsequent products of the hydroperoxide species were studied by annealing the irradiated samples in air at temperatures ranging from 22 to 110 C. A time-temperature superposition analysis provided an activation energy of 108 kJ/mol for the hydroperoxide decomposition process. The primary products of hydroperoxide decomposition were ketones and secondary alcohols with lesser amounts of acids and esters. EPR measurements suggest that the reactive hydroperoxide species reside in the amorphous phase of polyethylene, consistent with degradation occurring in the amorphous phase.
Date: November 19, 1999
Creator: ASSINK,ROGER A.; CELINA,MATHIAS C.; DUNBAR,TIMOTHY D.; ALAM,TODD M.; CLOUGH,ROGER LEE & GILLEN,KENNETH T.
Partner: UNT Libraries Government Documents Department

Carboxylic Acid Modified [Ti({mu}-ONep)(Onep){sub 3}]{sub 2} Compounds. Syntheses, Characterizations, X-Ray Structures, and Implications for the Thin Film Densification of TiO{sub 2} from Ti{sub 3}({mu}{sub 3}-O)(O{sub 2}CH){sub 2}(ONep){sub 8}, etc.

Description: No abstract prepared.
Date: August 2, 1999
Creator: Boyle, Timothy J.; Tyner, Ryan P.; Alam, Todd M.; Scott, Brian L.; Ziller, Joseph W. & Potter, B.G. Jr.
Partner: UNT Libraries Government Documents Department

Investigation of Oxidative Degradation in Polymers Using (17)O NMR Spectroscopy

Description: The thermal oxidation of pentacontane (C{sub 50}H{sub 102}), and of the homopolymer polyisoprene, has been investigated using {sup 17}O NMR spectroscopy. By performing the oxidation using {sup 17}O labeled O{sub 2} gas, it is possible to easily identify degradation products, even at relatively low concentrations. It is demonstrated that details of the degradation mechanism can be obtained from analysis of the {sup 17}O NMR spectra as a function of total oxidation. Pentacontane reveals the widest variety of reaction products, and exhibits changes in the relative product distributions with increasing O{sub 2} consumption. At low levels of oxygen incorporation, peroxides are the major oxidation product, while at later stages of degradation these species are replaced by increasing concentrations of ketones, alcohols, carboxylic acids and esters. Analyzing the product distribution can help in identification of the different free-radical decomposition pathways of hydroperoxides, including recombination, proton abstraction and chain scission, as well as secondary reactions. The {sup 17}O NMR spectra of thermally oxidized polyisoprene reveal fewer degradation functionalities, but exhibit an increased complexity in the type of observed degradation species due to structural features such as unsaturation and methyl branching. Alcohols and ethers formed from hydrogen abstraction and free radical termination.
Date: July 20, 1999
Creator: Alam, Todd M.; Celina, Mathew; Assink, Roger A.; Clough, Roger L.; Gillen, Kenneth T. & R., Wheeler David
Partner: UNT Libraries Government Documents Department