1 Matching Results

Search Results

Advanced search parameters have been applied.

Definition of a Twelve-Point Polygonal SAA Boundaryfor the GLAST Mission

Description: The Gamma-Ray Large Area Space Telescope (GLAST), set to launch in early 2008, detects gamma rays within a huge energy range of 100 MeV - 300 GeV. Background cosmic radiation interferes with such detection resulting in confusion over distinguishing cosmic from gamma rays encountered. This quandary is resolved by encasing GLAST's Large Area Telescope (LAT) with an Anti-Coincidence Detector (ACD), a device which identifies and vetoes charged particles. The ACD accomplishes this through plastic scintillator tiles; when cosmic rays strike, photons produced induce currents in Photomultiplier Tubes (PMTs) attached to these tiles. However, as GLAST orbits Earth at altitudes {approx}550km and latitudes between -26 degree and 26 degree, it will confront the South Atlantic Anomaly (SAA), a region of high particle flux caused by trapped radiation in the geomagnetic field. Since the SAA flux would degrade the sensitivity of the ACD's PMTs over time, a determined boundary enclosing this region need be attained, signaling when to lower the voltage on the PMTs as a protective measure. The operational constraints on such a boundary require a convex SAA polygon with twelve edges, whose area is minimal ensuring GLAST has maximum observation time. The AP8 and PSB97 models describing the behavior of trapped radiation were used in analyzing the SAA and defining a convex SAA boundary of twelve sides. The smallest possible boundary was found to cover 14.58% of GLAST's observation time. Further analysis of defining a boundary safety margin to account for inaccuracies in the models reveals if the total SAA hull area is increased by {approx}20%, the loss of total observational area is < 5%. These twelve coordinates defining the SAA flux region are ready for implementation by the GLAST satellite.
Date: August 29, 2007
Creator: Djomehri, Sabra I. & /UC, Santa Cruz /SLAC
Partner: UNT Libraries Government Documents Department