105 Matching Results

Search Results

Advanced search parameters have been applied.

'Micromanaging de Sitter holography'

Description: We develop tools to engineer de Sitter vacua with semi-holographic duals, using elliptic fibrations and orientifolds to uplift Freund-Rubin compactifications with CFT duals. The dual brane construction is compact and constitutes a microscopic realization of the dS/dS correspondence, realizing d-dimensional de Sitter space as a warped compactification down to (d-1)-dimensional de Sitter gravity coupled to a pair of large-N matter sectors. This provides a parametric microscopic interpretation of the Gibbons-Hawking entropy. We illustrate these ideas with an explicit class of examples in three dimensions, and describe ongoing work on four-dimensional constructions. The Gibbons-Hawking entropy of the de Sitter horizon [1] invites a microscopic interpretation and a holographic formulation of inflating spacetimes. Much progress was made in the analogous problem in black hole physics using special black holes in string theory whose microstates could be reliably counted, such as those analyzed in [2,3]; this led to the AdS/CFT correspondence [4]. In contrast, a microscopic understanding of the entropy of de Sitter space is more difficult for several reasons including its potential dynamical connections to other backgrounds (metastability), the absence of a non-fluctuating timelike boundary, and the absence of supersymmetry. In this paper, we develop a class of de Sitter constructions in string theory, built up from AdS/CFT dual pairs along the lines of [5], which are simple enough to provide a microscopic accounting of the parametric scaling of the Gibbons-Hawking entropy. These models realize microscopically a semi-holographic description of metastable de Sitter space which had been derived macroscopically in [6]. It would also be interesting to connect this to other approaches to de Sitter holography such as [7, 8] and to other manifestations of the de Sitter entropy such as [9]. The construction is somewhat analogous to neutral black branes analyzed in [11]. We will begin in section 2 by explaining ...
Date: August 26, 2010
Creator: Dong, Xi; Horn, Bart; /SLAC /Stanford U., Phys. Dept. /Santa Barbara, KITP; Silverstein, Eva; /Santa Barbara, KITP /SLAC /Stanford U., Phys. Dept.; Torroba, Gonzalo et al.
Partner: UNT Libraries Government Documents Department

Dynamical Messengers for Gauge Mediation

Description: We construct models of indirect gauge mediation where the dynamics responsible for breaking supersymmetry simultaneously generates a weakly coupled subsector of messengers. This provides a microscopic realization of messenger gauge mediation where the messenger and hidden sector fields are unified into a single sector. The UV theory is SQCD with massless and massive quarks plus singlets, and at low energies it flows to a weakly coupled quiver gauge theory. One node provides the primary source of supersymmetry breaking, which is then transmitted to the node giving rise to the messenger fields. These models break R-symmetry spontaneously, produce realistic gaugino and sfermion masses, and give a heavy gravitino.
Date: August 17, 2011
Creator: Hook, Anson; Torroba, Gonzalo & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

Geometric Transitions, Topological Strings, and Generalized Complex Geometry

Description: Mirror symmetry is one of the most beautiful symmetries in string theory. It helps us very effectively gain insights into non-perturbative worldsheet instanton effects. It was also shown that the study of mirror symmetry for Calabi-Yau flux compactification leads us to the territory of ''Non-Kaehlerity''. In this thesis we demonstrate how to construct a new class of symplectic non-Kaehler and complex non-Kaehler string theory vacua via generalized geometric transitions. The class admits a mirror pairing by construction. From a variety of sources, including super-gravity analysis and KK reduction on SU(3) structure manifolds, we conclude that string theory connects Calabi-Yau spaces to both complex non-Kaehler and symplectic non-Kaehler manifolds and the resulting manifolds lie in generalized complex geometry. We go on to study the topological twisted models on a class of generalized complex geometry, bi-Hermitian geometry, which is the most general target space for (2, 2) world-sheet theory with non-trivial H flux turned on. We show that the usual Kaehler A and B models are generalized in a natural way. Since the gauged supergravity is the low energy effective theory for the compactifications on generalized geometries, we study the fate of flux-induced isometry gauging in N = 2 IIA and heterotic strings under non-perturbative instanton effects. Interestingly, we find we have protection mechanisms preventing the corrections to the hyper moduli spaces. Besides generalized geometries, we also discuss the possibility of new NS-NS fluxes in a new doubled formalism.
Date: June 29, 2007
Creator: Chuang, Wu-yen & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

Gauge theories from D7-branes over vanishing 4-cycles

Description: We study quiver gauge theories on D7-branes wrapped over vanishing holomorphic 4-cycles. We investigate how to incorporate O7-planes and/or flavor D7-branes, which are necessary to cancel anomalies. These theories are chiral, preserve four supercharges and exhibit very rich infrared dynamics. Geometric transitions and duality in the presence of O-planes are analyzed. We study the Higgs branch of these quiver theories, showing the emergence of fuzzy internal dimensions. This branch is related to noncommutative instantons on the divisor wrapped by the seven-branes. Our results have a natural application to the recently introduced F(uzz) limit of F-theory.
Date: December 16, 2010
Creator: Franco, Sebastian; /Santa Barbara, KITP; Torroba, Gonzalo & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

Dimensional Mutation and Spacelike Singularities

Description: I argue that critical string theory on a Riemann surface of genus h >> 1 crosses over, when the surface approaches the string scale in size, to a background of supercritical string theory with effective central charge as large as 2h. Concrete evidence for this proposal is provided by the high energy density of states (realized on the Riemann surface side by strings wrapping nontrivial elements of the fundamental group) and by a linear sigma model which at large h approximates the time evolution through the initial transition. This suggests that cosmological singularities arising in negatively curved FRW backgrounds may be replaced by a phase of supercritical string theory.
Date: October 28, 2005
Creator: Silverstein, Eva & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

Singularities and Closed String Tachyons

Description: A basic problem in gravitational physics is the resolution of spacetime singularities where general relativity breaks down. The simplest such singularities are conical singularities arising from orbifold identifications of flat space, and the most challenging are spacelike singularities inside black holes (and in cosmology). Topology changing processes also require evolution through classically singular spacetimes. I briefly review how a phase of closed string tachyon condensate replaces, and helps to resolve, basic singularities of each of these types. Finally I discuss some interesting features of singularities arising in the small volume limit of compact negatively curved spaces and the emerging zoology of spacelike singularities.
Date: March 17, 2006
Creator: Silverstein, Eva & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

Sweet Spot Supersymmetry

Description: We find that there is no supersymmetric flavor/CP problem, {mu}-problem, cosmological moduli/gravitino problem or dimension four/five proton decay problem in a class of supersymmetric theories with O(1) GeV gravitino mass. The cosmic abundance of the nonthermally produced gravitinos naturally explains the dark matter component of the universe. A mild hierarchy between the mass scale of supersymmetric particles and electroweak scale is predicted, consistent with the null result of a search for the Higgs boson at the LEP-II experiments. A relation to the strong CP problem is addressed. We propose a parametrization of the model for the purpose of collider studies. The scalar tau lepton is the next to lightest supersymmetric particle in a theoretically favored region of the parameter space. The lifetime of the scalar tau is of O(1000) seconds with which it is regarded as a charged stable particle in collider experiments. We discuss characteristic signatures and a strategy for confirmation of this class of theories at the LHC experiments.
Date: June 6, 2007
Creator: Ibe, Masahiro; Kitano, Ryuichiro & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

Resonance--Continuum Interference in Light Higgs Boson Production at a Photon Collider

Description: We study the effect of interference between the Standard Model Higgs boson resonance and the continuum background in the process {gamma}{gamma} {yields} H {yields} b{bar b} at a photon collider. Taking into account virtual gluon exchange between the final-state quarks, we calculate the leading corrections to the height of the resonance for the case of a light (m{sub H} < 160 GeV) Higgs boson. We find that the interference is destructive and around 0.1-0.2% of the peak height, depending on the mass of the Higgs and the scattering angle. This suppression is smaller by an order of magnitude than the anticipated experimental accuracy at a photon collider. However, the fractional suppression can be significantly larger if the Higgs coupling to b quarks is increased by physics beyond the Standard Model.
Date: January 6, 2009
Creator: Dixon, Lance J.; Sofianatos, Yorgos & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

Magnetic Bion Condensation: A New Mechanism ofConfinement and Mass Gap in Four Dimensions

Description: In recent work, we derived the long distance confining dynamics of certain QCD-like gauge theories formulated on small S{sup 1} x R{sup 3} based on symmetries, an index theorem and abelian duality. Here, we give the microscopic derivation. The solution reveals a new mechanism of confinement in QCD(adj) in the regime where we have control over both perturbative and nonperturbative aspects. In particular, consider SU(2) QCD(adj) theory with 1 {le} n{sub f} {le} 4 Majorana fermions, a theory which undergoes gauge symmetry breaking at small S{sup 1}. If the magnetic charge of the BPS monopole is normalized to unity, we show that confinement occurs due to condensation of objects with magnetic charge 2, not 1. Due to index theorems, we know that such an object cannot be a two identical monopole configuration. Its net topological charge must vanish, and hence it must be topologically indistinguishable from the perturbative vacuum. We construct such objects, the magnetically charged, topologically null molecules of a BPS monopole and {bar K}{bar K} antimonopole, which we refer as magnetic bions. An immediate puzzle with this proposal is the apparent Coulomb repulsion between BPS-{bar K}{bar K} pair. An attraction which overcomes the Coulomb repulsion between the two is induced by 2n{sub f} -fermion exchange. Bion condensation is also the mechanism of confinement in N = 1 SYM on the same four-manifold. The SU(N) generalization hints a possible hidden integrability behind nonsupersymmetric QCD of affine Toda type, and allows us to analytically compute the string tensions and thicknesses. We currently do not know the extension to R{sup 4}.
Date: September 25, 2007
Creator: Unsal, Mithat & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

QCD-like Theories on R_3\times S_1: a Smooth Journey from Small to Large r(S_1)with Double-Trace Deformations

Description: We consider QCD-like theories with one massless fermion in various representations of the gauge group SU(N). The theories are formulated on R{sub 3} x S{sub 1}. In the decompactification limit of large r(S{sub 1}) all these theories are characterized by confinement, mass gap and spontaneous breaking of a (discrete) chiral symmetry ({chi}SB). At small r(S{sub 1}), in order to stabilize the vacua of these theories at a center-symmetric point, we suggest to perform a double trace deformation. With these deformation, the theories at hand are at weak coupling at small r(S{sub 1}) and yet exhibit basic features of the large-r(S{sub 1}) limit: confinement and {chi}SB. We calculate the string tension, mass gap, bifermion condensates and {theta} dependence. The double-trace deformation becomes dynamically irrelevant at large r(S{sub 1}). Despite the fact that at small r(S{sub 1}) confinement is Abelian, while it is expected to be non-Abelian at large r(S{sub 1}), we argue that small and large-r(S{sub 1}) physics are continuously connected. If so, one can use small-r(S{sub 1}) laboratory to extract lessons about QCD and QCD-like theories on R{sub 4}.
Date: February 22, 2008
Creator: Shifman, Mikhail; U., /Minnesota; Unsal, Mithat & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

Higgs Discovery in the Presence of Light CP-Odd Scalars

Description: Many models of electroweak symmetry breaking have an additional light pseudoscalar. If the Higgs boson can decay to a new pseudoscalar, LEP searches for the Higgs can be significantly altered and the Higgs can be as light as 86 GeV. Discovering the Higgs boson in these models is challenging when the pseudoscalar is lighter than 10 GeV because it decays dominantly into tau leptons. In this paper, we discuss discovering the Higgs in a subdominant decay mode where one of the pseudoscalars decays to a pair of muons. This search allows for potential discovery of a cascade-decaying Higgs boson with the complete Tevatron data set or early data at the LHC.
Date: June 19, 2009
Creator: Lisanti, Mariangela; Wacker, Jay G. & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

Supersymmetric Model Builing (and Sweet Spot Supersymmetry)

Description: It has been more than twenty years since theorists started discussing supersymmetric model building/phenomenology. We review mechanisms of supersymmetry breaking/mediation and problems in each scenario. We propose a simple model to address those problems and discuss its phenomenology.
Date: January 8, 2008
Creator: Ibe, Masahiro; /SLAC /Stanford U., Phys. Dept.; Kitano, Ryuichiro & Alamos, /Los
Partner: UNT Libraries Government Documents Department

Separating Signal From Background Using Ensembles of Rules

Description: Machine learning has emerged as a important tool for separating signal events from associated background in high energy particle physics experiments. This paper describes a new machine learning method based on ensembles of rules. Each rule consists of a conjuction of a small number of simple statements (''cuts'') concerning the values of individual input variables. These rule ensembles produce predictive accuracy comparable to the best methods. However their principal advantage lies in interpretation. Because of its simple form, each rule is easy to understand, as is its influence on the predictive model. Similarly, the degree of relevance of each of the respective input variables can be assessed. Graphical representations are presented that can be used to ascertain the dependence of the model jointly on the variables used for prediction.
Date: December 1, 2006
Creator: Friedman, J.H. & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

Comments on large-N volume independence

Description: We study aspects of the large-N volume independence on R{sup 3} X L{sup {Gamma}}, where L{sup {Gamma}} is a {Gamma}site lattice for Yang-Mills theory with adjoint Wilson-fermions. We find the critical number of lattice sites above which the center-symmetry analysis on L{sup {Gamma}} agrees with the one on the continuum S{sup 1}. For Wilson parameter set to one and {Gamma}{>=}2, the two analyses agree. One-loop radiative corrections to Wilson-line masses are finite, reminiscent of the UV-insensitivity of the Higgs mass in deconstruction/Little-Higgs theories. Even for theories with {Gamma}=1, volume independence in QCD(adj) may be guaranteed to work by tuning one low-energy effective field theory parameter. Within the parameter space of the theory, at most three operators of the 3d effective field theory exhibit one-loop UV-sensitivity. This opens the analytical prospect to study 4d non-perturbative physics by using lower dimensional field theories (d=3, in our example).
Date: June 2, 2010
Creator: Poppitz, Erich; U., /Toronto; Unsal, Mithat & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

AdS/CFT and Large-N Volume Independence

Description: We study the Eguchi-Kawai reduction in the strong-coupling domain of gauge theories via the gravity dual of N=4 super-Yang-Mills on R{sup 3} x S{sup 1}. We show that D-branes geometrize volume independence in the center-symmetric vacuum and give supergravity predictions for the range of validity of reduced large-N models at strong coupling.
Date: August 26, 2010
Creator: Poppitz, Erich; U., /Toronto; Unsal, Mithat & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

Conformality or Confinement (II): One-flavor CFTs and Mixed-Representation QCD

Description: We study QCD-like four dimensional theories in the theoretically controlled framework of deformation theory and/or twisted partition function on S{sup 1} x R{sup 3}. By using duality, we show that a class of one-flavor theories exhibit new physical phenomena: discrete chiral symmetry breaking ({chi}SB) induced by the condensation of topological disorder operators, and confinement and the generation of mass gap due to new non-selfdual topological excitations. In the R{sup 4} limit, we argue that the mass gap disappears, the {chi}SB vacua are of runaway type, and the theory flows to a CFT. We also study mixed representation theories and find abelian {chi}SB by topological operators charged under abelian chiral symmetries. These are reminiscent to, but distinct, from Seiberg-Witten theory with matter, where 4d monopoles have non-abelian chiral charge. This examination also helps us refine our recent bounds on the conformal window. In an Addendum, we also discuss mixed vectorlike/chiral representation theories, obtain bounds on their conformal windows, and compare with the all-order beta function results of arXiv:0911.0931.
Date: August 26, 2010
Creator: Poppitz, Erich; U., /Toronto; Unsal, Mithat & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

Conformality or confinement: (IR)relevance of topological excitations

Description: What distinguishes two asymptotically-free non-abelian gauge theories on R{sup 4}, one of which is just below the conformal window boundary and confines, while the other is slightly above the boundary and flows to an infrared conformal field theory? In this work, we aim to answer this question for non-supersymmetric Yang-Mills theories with fermions in arbitrary chiral or vectorlike representations. We use the presence or absence of mass gap for gauge fluctuations as an identifier of the infrared behavior. With the present-day understanding of such gauge theories, the mass gap for gauge fluctuations cannot be computed on R{sup 4}. However, recent progress allows its non-perturbative computation on R{sup 3} x S{sup 1} by using either the twisted partition function or deformation theory, for a range of sizes of S{sup 1} depending on the theory. For small number of fermions, N{sub f}, we show that the mass gap increases with increasing radius, due to the non-dilution of monopoles and bions - the topological excitations relevant for confinement on R{sup 3} x S{sup 1}. For sufficiently large N{sub f}, we show that the mass gap decreases with increasing radius. In a class of theories, we claim that the decompactification limit can be taken while remaining within the region of validity of semiclassical techniques, giving the first examples of semiclassically solvable Yang-Mills theories at any size S{sup 1}. For general non-supersymmetric vectorlike or chiral theories, we conjecture that the change in the behavior of the mass gap on R{sup 3} x S{sup 1} as a function of the radius occurs near the lower boundary of the conformal window and give non-perturbative estimates of its value. For vectorlike theories, we compare our estimates of the conformal window with existing lattice results, truncations of the Schwinger-Dyson equations, NSVZ beta function-inspired estimates, and degree of freedom counting ...
Date: August 26, 2010
Creator: Poppitz, Erich; U., /Toronto; Unsal, Mithat & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

Pandora's Box and Non-Selfdual Topological Excitations

Description: In the last few years, we have realized the existence of a new class of topological excitations, which are rather distinct from the platonic world of monopoles, monopole-instantons and instantons. All of the latter arise as solutions of the Prasad-Sommerfield type first order differential (self-duality) equations and have been extensively discussed in the context of confinement and chiral symmetry breaking for the last 30 years. However, new calculable deformations of asymptotically free chiral and vector-like gauge theories give us a new picture of these physical phenomena. Most often, the excitations which lead to confinement are not solutions to PS-type equations, they are non-selfdual and they are often bizarre. They are referred to as magnetic bions, triplets, and quintets, due to their composite nature. Bizarre as they are, combined with large-N volume independence, these novel non-self-dual excitations may also provide hope that at least some non-abelian gauge theories may be solvable.
Date: June 7, 2010
Creator: Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. & ,
Partner: UNT Libraries Government Documents Department

Retrofitting and the mu Problem

Description: One of the challenges of supersymmetry (SUSY) breaking and mediation is generating a {mu} term consistent with the requirements of electro-weak symmetry breaking. The most common approach to the problem is to generate the {mu} term through a SUSY breaking F-term. Often these models produce unacceptably large B{mu} terms as a result. We will present an alternate approach, where the {mu} term is generated directly by non-perturtative effects. The same non-perturbative effect will also retrofit the model of SUSY breaking in such a way that {mu} is at the same scale as masses of the Standard Model superpartners. Because the {mu} term is not directly generated by SUSY breaking effects, there is no associated B{mu} problem. These results are demonstrated in a toy model where a stringy instanton generates {mu}.
Date: August 26, 2010
Creator: Green, Daniel; Weigand, Timo & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

STM imaging of electronic waves on the surface of Bi2Te3: topologically protected surface states and hexagonal warping effects

Description: Scanning tunneling spectroscopy studies on high-quality Bi{sub 2}Te{sub 3} crystals exhibit perfect correspondence to ARPES data, hence enabling identification of different regimes measured in the local density of states (LDOS). Oscillations of LDOS near a step are analyzed. Within the main part of the surface band oscillations are strongly damped, supporting the hypothesis of topological protec- tion. At higher energies, as the surface band becomes concave, oscillations appear which disperse with a particular wave-vector that may result from an unconventional hexagonal warping term.
Date: June 2, 2010
Creator: Alpichshev, Zhanybek; /SIMES, Stanford /SLAC /Stanford U., Phys. Dept.; Analytis, J.G.; /SIMES, Stanford /SLAC /Stanford U., Phys. Dept.; Chu, J.-H.; Fisher, I.R. et al.
Partner: UNT Libraries Government Documents Department

Gravitational Wave Detection with Atom Interferometry

Description: We propose two distinct atom interferometer gravitational wave detectors, one terrestrial and another satellite-based, utilizing the core technology of the Stanford 10m atom interferometer presently under construction. The terrestrial experiment can operate with strain sensitivity {approx} 10{sup -19}/{radical}Hz in the 1 Hz-10 Hz band, inaccessible to LIGO, and can detect gravitational waves from solar mass binaries out to megaparsec distances. The satellite experiment probes the same frequency spectrum as LISA with better strain sensitivity {approx} 10{sup -20}/{radical}Hz. Each configuration compares two widely separated atom interferometers run using common lasers. The effect of the gravitational waves on the propagating laser field produces the main effect in this configuration and enables a large enhancement in the gravitational wave signal while significantly suppressing many backgrounds. The use of ballistic atoms (instead of mirrors) as inertial test masses improves systematics coming from vibrations and acceleration noise, and reduces spacecraft control requirements.
Date: January 23, 2008
Creator: Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC /Stanford U., Phys. Dept.; Hogan, Jason M.; Kasevich, Mark A. et al.
Partner: UNT Libraries Government Documents Department

Single-Sector Supersymmetry Breaking, Chirality, and Unification

Description: Calculable single-sector models provide an elegant framework for generating the flavor textures via compositeness, breaking supersymmetry, and explaining the electroweak scale. Such models may be realized naturally in supersymmetric QCD with additional gauge singlets (SSQCD), though it remains challenging to construct models without a surfeit of light exotic states where the Standard Model index emerges naturally. We classify possible single-sector models based on Sp confining SSQCD according to their Standard Model index and number of composite messengers. This leads to simple, calculable models that spontaneously break supersymmetry, reproduce the fermion flavor hierarchy, and explain the Standard Model index dynamically with little or no additional matter. At low energies these theories realize a 'more minimal' soft spectrum with direct mediation and a gravitino LSP.
Date: August 12, 2011
Creator: Behbahani, Siavosh R.; /SLAC /Stanford U., Phys. Dept.; Craig, Nathaniel; /Stanford U., Phys. Dept. /Princeton, Inst. Advanced Study /Rutgers U., Piscataway; Torroba, Gonzalo & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

Phases of N=1 Supersymmetric Chiral Gauge Theories

Description: We analyze the phases of supersymmetric chiral gauge theories with an antisymmetric tensor and (anti)fundamental flavors, in the presence of a classically marginal superpotential deformation. Varying the number of flavors that appear in the superpotential reveals rich infrared chiral dynamics and novel dualities. The dualities are characterized by an infinite family of magnetic duals with arbitrarily large gauge groups describing the same fixed point, correlated with arbitrarily large classical global symmetries that are truncated nonperturbatively. At the origin of moduli space, these theories exhibit a phase with confinement and chiral symmetry breaking, an interacting nonabelian Coulomb phase, and phases where an interacting sector coexists with a sector that either s-confines or is in a free magnetic phase. Properties of these intriguing 'mixed phases' are studied in detail using duality and a-maximization, and the presence of superpotential interactions provides further insights into their formation.
Date: February 17, 2012
Creator: Craig, Nathaniel; /Princeton, Inst. Advanced Study /Rutgers U., Piscataway; Essig, Rouven; /Princeton, Inst. Advanced Study /YITP, Stony Brook /SLAC /Stanford U., Phys. Dept.; Hook, Anson; Torroba, Gonzalo et al.
Partner: UNT Libraries Government Documents Department