77 Matching Results

Search Results

Advanced search parameters have been applied.

Manufacturing Extension Partnership Program: An Overview

Description: This report provides a brief overview of The Hollings Manufacturing Partnership (MEP), which is a program of regional centers set up to assist small and medium-sized manufacturing companies use knowledge and technologies developed under the auspices of the National Institute of Standards and Technology (NIST).
Date: March 24, 2009
Creator: Schacht, Wendy H.
Partner: UNT Libraries Government Documents Department

2009 Annual Progress Report: DOE Hydrogen Program, November 2009 (Book)

Description: This report summarizes the hydrogen and fuel cell R&D activities and accomplishments of the DOE Hydrogen Program for FY2009. It covers the program areas of hydrogen production and delivery; fuel cells; manufacturing; technology validation; safety, codes and standards; education; and systems analysis.
Date: November 1, 2009
Partner: UNT Libraries Government Documents Department

Force Modulator System

Description: Many metal parts manufacturers use large metal presses to shape sheet metal into finished products like car body parts, jet wing and fuselage surfaces, etc. These metal presses take sheet metal and - with enormous force - reshape the metal into a fully formed part in a manner of seconds. Although highly efficient, the forces involved in forming metal parts also damage the press itself, limit the metals used in part production, slow press operations and, when not properly controlled, cause the manufacture of large volumes of defective metal parts. To date, the metal-forming industry has not been able to develop a metal-holding technology that allows full control of press forces during the part forming process. This is of particular importance in the automotive lightweighting efforts under way in the US automotive manufacturing marketplace. Metalforming Controls Technology Inc. (MC2) has developed a patented press control system called the Force Modulator that has the ability to control these press forces, allowing a breakthrough in stamping process control. The technology includes a series of hydraulic cylinders that provide controlled tonnage at all points in the forming process. At the same time, the unique cylinder design allows for the generation of very high levels of clamping forces (very high tonnages) in very small spaces; a requirement for forming medium and large panels out of HSS and AHSS. Successful production application of these systems testing at multiple stamping operations - including Ford and Chrysler - has validated the capabilities and economic benefits of the system. Although this technology has been adopted in a number of stamping operations, one of the primary barriers to faster adoption and application of this technology in HSS projects is system cost. The cost issue has surfaced because the systems currently in use are built for each individual die as ...
Date: April 30, 2009
Creator: Clark, Redmond
Partner: UNT Libraries Government Documents Department

Phase 1 Final Technical Report - MgB2 Synthesis for High Field Performance

Description: Accelerator Technology Corp. (ATC) has successfully completed its Phase 1 effort to devel-op rf plasma torch synthesis of MgB2 superconducting powder. The overall objective is to de-velop a way to introduce homogeneous alloying of C and SiC impurities into phase-pure MgB2. Several groups have attained remarkable benefits from such alloying in raising the upper critical field Hc2 from ~14 T to ~30 T (bulk) and ~50 T (thin films). But no one has succeeded in pro-ducing that benefit homogeneously, so that current transport in a practical powder-in-tube (PIT) conductor is largely the same as without the alloying. ATC has conceived the possibility of attaining such homogeneity by passing aerosol suspen-sions of reactant powders through an rf plasma torch, with each reactant transported on a stream-line that heats it to an optimum temperature for the synthesis reaction. This procedure would uniquely access non-equilibrium kinetics for the synthesis reaction, and would provide the possi-bility to separately control the temperature and stoichiometry of each reactant as it enters the mixing region where synthesis occurs. It also facilitates the introduction of seed particles (e.g. nanoscale SiC) to dramatically enhance the rate of the synthesis reaction compared to gas-phase synthesis in rf plasma reported by Canfield and others. During the Phase 1 effort ATC commissioned its 60 kW 5 MHz rf source for a manufactur-ing-scale rf plasma torch. This effort required repair of numerous elements, integration of cooling and input circuits, and tuning of the load characteristics. The effort was successful, and the source has now been tested to ~full power. Also in the Phase 1 effort we encountered a subsidiary but very important problem: the world is running out of the only present supply of phase-pure amorphous boron. The starting boron powder must be in the amorphous phase in order for the synthesis reaction ...
Date: November 2, 2009
Creator: Bhatia, Mohit & McIntyre, Peter
Partner: UNT Libraries Government Documents Department

Optimized Volumetric Scanning for X-Ray Array Sources

Description: Non-destructive evaluation (NDE) is the science and technology of determining non-invasively the internal structure of manufactured parts, objects, and materials. NDE application areas include medicine, industrial manufacturing, military, homeland security, and airport luggage screening. X-ray measurement systems are most widely used because of their ability to image through a wide range of material densities (from human tissue in medical applications to the dense materials of weapon components). Traditional x-ray systems involve a single source and detector system that rotate and/or translate about the object under evaluation. At each angular location, the source projects x-rays through the object. The rays undergo attenuation proportional to the density of the object's constitutive material. The detector records a measure of the attenuation. Mathematical algorithms are used to invert the forward attenuated ray projection process to form images of the object. This is known as computed tomography (CT). In recent years, the single-source x-ray NDE systems have been generalized to arrays of x-ray sources. Array sources permit multiple views of the object with fewer rotations and translations of the source/detector system. The spatially diverse nature of x-ray array sources has the potential of reducing data collection time, reducing imaging artifacts, and increasing the resolution of the resultant images. Most of the existing CT algorithms were not derived from array source models with a spatially diverse set of viewing perspectives. Single-source x-ray CT data collection, processing, and imaging methods and algorithms are not applicable when the source location is expanded from one dimension (a rotating and/or translating point source) to two (a rotating and/or translating array). They must be reformulated. The goal of this project is to determine the applicability of x-ray array sources to problems of interest to LLNL and its customers. It is believed array source data collection will be faster while yielding higher ...
Date: September 29, 2009
Creator: Lehman, S K; Foudray, A M; Wang, A; Kallman, J S & Martz, H
Partner: UNT Libraries Government Documents Department

Mask defect verification using actinic inspection and defect mitigation technology

Description: The availability of defect-free masks remains one of the key challenges for inserting extreme ultraviolet lithography (EUVL) into high volume manufacturing. The successful production of defect-free masks will depend on the timely development of defect inspection tools, including both mask blank inspection tools and absorber pattern inspection tools to meet the 22 nm half-pitch node. EUV mask blanks with embedded phase defects were inspected with a reticle actinic inspection tool (AIT) and the Lasertec M7360. The Lasertec M7360 is operated at SEMA TECH's Mask blank Development Center (MBDC) in Albany, with sensitivity to multilayer defects down to 40-45 nm, which is not likely sufficient for mask blank development below the 32 nm half-pitch node. Phase defect printability was simulated to calculate the required defect sensitivity for the next generation blank inspection tool to support reticle development for the sub-32 nm half-pitch technology node. This paper will also discuss the kind of infrastructure that will be required in the development and mass production stages.
Date: April 14, 2009
Creator: Huh, Sungmin; Kearney, Patrick; Wurm, Stefan; Goodwin, Frank; Goldberg, Kenneth; Mochi, Iacopo et al.
Partner: UNT Libraries Government Documents Department

International X-Band Linear Collider Accelerator Structure R&D

Description: For more than fifteen years before the International Technology Recommendation Panel (ITRP) decision in August, 2004, there were intensive R&D activities and broad international collaboration among the groups at SLAC, KEK, FNAL, LLNL and other labs for the room temperature X-Band accelerator structures. The goal was to provide an optimized design of the main linac structure for the NLC (Next Linear Collider) or GLC (Global Linear Collider). There have been two major challenges in developing X-band accelerator structures for the linear colliders. The first is to demonstrate stable, long-term operation at the high gradient (65 MV/m) that is required to optimize the machine cost. The second is to strongly suppress the beam induced long-range wakefields, which is required to achieve high luminosity. More than thirty X-band accelerator structures with various RF parameters, cavity shapes and coupler types have been fabricated and tested since 1989. A summary of the main achievements and experiences are presented in this talk including the structure design, manufacturing techniques, high power performance, and other structure related issues. Also, the new progress in collaborating with the CLIC, high gradient structures and X-Band structure applications for RF deflectors and others are briefly introduced.
Date: March 4, 2009
Creator: Wang, J. W.
Partner: UNT Libraries Government Documents Department

Project Plan Remote Target Fabrication Refurbishment Project

Description: In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of {sup 252}Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The {sup 252}Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of {sup 252}Cf; the average irradiation period is {approx}10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of {sup 252}Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were ...
Date: August 1, 2009
Creator: Bell, Gary L & Taylor, Robin D
Partner: UNT Libraries Government Documents Department

Annual Technical Progress Report of Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2007 Through September 30,2008

Description: The Office of Radioisotope Power Systems (RPS) of the Department of Energy (DOE) provides RPS for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of RPS for fiscal year (FY) 2008. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS.
Date: April 1, 2009
Creator: King, James F
Partner: UNT Libraries Government Documents Department

DOE Energy Challenge Project

Description: Project Objectives: 1. Promote energy efficiency concepts in undergraduate and graduate education. 2. Stimulate and interest in pulp and paper industrial processes, which promote and encourage activities in the area of manufacturing design efficiency. 3. Attract both industrial and media attention. Background and executive Summary: In 1997, the Institute of Paper Science and Technology in conjunction with the U.S. Department of Energy developed a university design competition with an orientation to the Forest Products Industry. This university design competition is in direct alignment with DOE’s interests in instilling in undergraduate education the concepts of developing energy efficient processes, minimizing waste, and providing environmental benefits and in maintaining and enhancing the economic competitiveness of the U.S. forest products industry in a global environment. The primary focus of the competition is projects, which are aligned with the existing DOE Agenda 2020 program for the industry and the lines of research being established with the colleges comprising the Pulp and Paper Education and Research Alliance (PPERA). The six design competitions were held annually for the period 1999 through 2004.
Date: April 24, 2009
Creator: Murray, Frank & Schaepe, Michael
Partner: UNT Libraries Government Documents Department

Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

Description: Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).
Date: January 31, 2009
Creator: National Security Technologies, LLC
Partner: UNT Libraries Government Documents Department

Manufacturing Extension Partnership Program: An Overview

Description: This report provides a brief overview of The Hollings Manufacturing Partnership (MEP), which is a program of regional centers set up to assist small and medium-sized manufacturing companies use knowledge and technologies developed under the auspices of the National Institute of Standards and Technology (NIST).
Date: June 29, 2009
Creator: Schacht, Wendy H.
Partner: UNT Libraries Government Documents Department

The “SF” System of Sextupoles for the JLAB 10 KW Free Electron Laser Upgrade

Description: The characteristics of the system of “SF” Sextupoles for the infrared Free Electron Laser Upgrade1 at the Thomas Jefferson National Accelerator Facility (JLab) are described. These eleven sextupoles possess a large field integral (2.15 T/m) with +/- 0.2%
Date: May 1, 2009
Creator: George Biallas, Mark Augustine, Kenneth Baggett, David Douglas, Robin Wines
Partner: UNT Libraries Government Documents Department

Improved DC Gun Insulator

Description: Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.
Date: May 1, 2009
Creator: M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil
Partner: UNT Libraries Government Documents Department

Determination of Basic Structure-Property Relations for Processing and Modeling in Advanced Nuclear Fuel: Microstructure Evolution and Mechanical Properties

Description: The project objective is to study structure-property relations in solid solutions of nitrides and oxides with surrogate elements to simulate the behavior of fuels of inert matrix fuels of interest to the Advanced Fuel Cycle Initiative (AFCI), with emphasis in zirconium-based materials. Work with actual fuels will be carried out in parallel in collaboration with Los Alamos National Laboratory (LANL). Three key aspects will be explored: microstructure characterization through measurement of global texture evolution and local crystallographic variations using Electron Backscattering Diffraction (EBSD); determination of mechanical properties, including fracture toughness, quasi-static compression strength, and hardness, as functions of load and temperature, and, finally, development of structure-property relations to describe mechanical behavior of the fuels based on experimental data. Materials tested will be characterized to identify the mechanisms of deformation and fracture and their relationship to microstructure and its evolution. New aspects of this research are the inclusion of crystallographic information into the evaluation of fuel performance and the incorporation of statistical variations of microstructural variables into simplified models of mechanical behavior of fuels that account explicitly for these variations. The work is expected to provide insight into processing conditions leading to better fuel performance and structural reliability during manufacturing and service, as well as providing a simplified testing model for future fuel production.
Date: March 1, 2009
Creator: Wheeler, Kirk; Parra, Manuel & Peralta, Pedro
Partner: UNT Libraries Government Documents Department

Large-Scale Sequencing: The Future of Genomic Sciences Colloquium

Description: Genetic sequencing and the various molecular techniques it has enabled have revolutionized the field of microbiology. Examining and comparing the genetic sequences borne by microbes - including bacteria, archaea, viruses, and microbial eukaryotes - provides researchers insights into the processes microbes carry out, their pathogenic traits, and new ways to use microorganisms in medicine and manufacturing. Until recently, sequencing entire microbial genomes has been laborious and expensive, and the decision to sequence the genome of an organism was made on a case-by-case basis by individual researchers and funding agencies. Now, thanks to new technologies, the cost and effort of sequencing is within reach for even the smallest facilities, and the ability to sequence the genomes of a significant fraction of microbial life may be possible. The availability of numerous microbial genomes will enable unprecedented insights into microbial evolution, function, and physiology. However, the current ad hoc approach to gathering sequence data has resulted in an unbalanced and highly biased sampling of microbial diversity. A well-coordinated, large-scale effort to target the breadth and depth of microbial diversity would result in the greatest impact. The American Academy of Microbiology convened a colloquium to discuss the scientific benefits of engaging in a large-scale, taxonomically-based sequencing project. A group of individuals with expertise in microbiology, genomics, informatics, ecology, and evolution deliberated on the issues inherent in such an effort and generated a set of specific recommendations for how best to proceed. The vast majority of microbes are presently uncultured and, thus, pose significant challenges to such a taxonomically-based approach to sampling genome diversity. However, we have yet to even scratch the surface of the genomic diversity among cultured microbes. A coordinated sequencing effort of cultured organisms is an appropriate place to begin, since not only are their genomes available, but they are also accompanied ...
Date: January 1, 2009
Creator: Riley, Margaret & Buckley, Merry
Partner: UNT Libraries Government Documents Department

WInd-and-react Bi-2212 coil development for accelerator magnets

Description: Sub-scale coils are being manufactured and tested at Lawrence Berkeley National Laboratory in order to develop wind-and-react Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} (Bi-2212) magnet technology for future graded accelerator magnet use. Previous Bi-2212 coils showed significant leakage of the conductors core constituents to the environment, which can occur during the partial melt reaction around 890 C in pure oxygen. The main origin of the observed leakage is intrinsic leakage of the wires, and the issue is therefore being addressed at the wire manufacturing level. We report on further compatibility studies, and the performance of new sub-scale coils that were manufactured using improved conductors. These coils exhibit significantly reduced leakage, and carry currents that are about 70% of the witness wire critical current (I{sub c}). The coils demonstrate, for the first time, the feasibility of round wire Bi-2212 conductors for accelerator magnet technology use. Successful high temperature superconductor coil technology will enable the manufacture of graded accelerator magnets that can surpass the, already closely approached, intrinsic magnetic field limitations of Nb-based superconducting magnets.
Date: October 13, 2009
Creator: Godeke, A.; Acosta, P.; Cheng, D.; Dietderich, D. R.; Mentink, M. G. T.; Prestemon, S. O. et al.
Partner: UNT Libraries Government Documents Department

Energy Saving Glass Lamination via Selective Radio-Frequency Heating

Description: This Inventions and Innovations program supported the technical and commercial research and development needed to elevate Ceralink's energy saving process for flat glass lamination from bench scale to a self-supporting technology with significant potential for growth. Radio-frequency heating was any un-explored option for laminating glass prior to this program. With significant commercial success through time and energy savings in the wood, paper, and plastics industries, RF heating was found to have significant promise for the energy intensive glass lamination industry. A major technical goal of the program was to demonstrate RF lamination across a wide range of laminate sizes and materials. This was successfully accomplished, dispelling many skeptics' concerns about the abilities of the technology. Ceralink laminated panels up to 2 ft x 3 ft, with four sets processed simultaneously, in a 3 minute cycle. All major categories of interlayer materials were found to work with RF lamination. In addition to laminating glass, other materials including photovoltaic silicon solar cells, light emitting diodes, metallized glass, plastics (acrylic and polycarbonate), and ceramics (alumina) were found compatible with the RF process. This opens up a wide range of commercial opportunities beyond the initially targeted automotive industry. The dramatic energy savings reported for RF lamination at the bench scale were found to be maintained through the scale up of the process. Even at 2 ft x 3 ft panel sizes, energy savings are estimated to be at least 90% compared to autoclaving or vacuum lamination. With targeted promotion through conference presentations, press releases and internet presence, RF lamination has gained significant attention, drawing large audiences at American Ceramic Society meetings. The commercialization success of the project includes the establishment of a revenue-generating business model for providing process development and demonstrations for potential RF lamination users. A path to industrial energy benefits and revenue ...
Date: November 11, 2009
Creator: Shulman, Holly S. & Allan, Shawn M.
Partner: UNT Libraries Government Documents Department

Investigation of multi-layer thin films for energy storage.

Description: We investigate here the feasibility of increasing the energy density of thin-film capacitors by construction of a multi-layer capacitor device through ablation and redeposition of the capacitor materials using a high-power pulsed ion beam. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The dielectric capacitor filler material was a composition of Lead-Lanthanum-Zirconium-Titanium oxide (PLZT). The energy storage can be increased by using material of intrinsically high dielectric constant, and constructing many thin layers of this material. For successful device construction, there are a number of challenging requirements including correct stoichiometric and crystallographic composition of the deposited PLZT. This report details some success in satisfying these requirements, even though the attempt at device manufacture was unsuccessful. The conclusion that 900 C temperatures are necessary to reconstitute the deposited PLZT has implications for future manufacturing capability.
Date: January 1, 2009
Creator: Renk, Timothy Jerome & Monson, Todd
Partner: UNT Libraries Government Documents Department

Economic On-Grid Solar Energy via Organic Thin Film Technology: 28 September 2007 - 27 October 2008

Description: Plextronics' PV Incubator goal was to take its organic photovoltaic technology from lab-scale and demonstrate a pathway to 3-W manufacturing capacity (~2010) and 7 cents/kWh LCOE by 2015.
Date: December 1, 2009
Creator: Laird, D.; Bernkopf, J.; Jian, S.; Krieg, J.; Li, S.; McGuiness, C. et al.
Partner: UNT Libraries Government Documents Department

Assess the Efficacy of an Aerial Distant Observer Tool Capable of Rapid Analysis of Large Sections of Collector Fields: FY 2008 CSP Milestone Report, September 2008

Description: We assessed the feasibility of developing an aerial Distant Observer optical characterization tool for collector fields in concentrating solar power plants.
Date: February 1, 2009
Creator: Jorgensen, G.; Burkholder, F.; Gray, A. & Wendelin, T.
Partner: UNT Libraries Government Documents Department

Blade System Design Study. Part II, final project report (GEC).

Description: As part of the U.S. Department of Energy's Low Wind Speed Turbine program, Global Energy Concepts LLC (GEC)1 has studied alternative composite materials for wind turbine blades in the multi-megawatt size range. This work in one of the Blade System Design Studies (BSDS) funded through Sandia National Laboratories. The BSDS program was conducted in two phases. In the Part I BSDS, GEC assessed candidate innovations in composite materials, manufacturing processes, and structural configurations. GEC also made recommendations for testing composite coupons, details, assemblies, and blade substructures to be carried out in the Part II study (BSDS-II). The BSDS-II contract period began in May 2003, and testing was initiated in June 2004. The current report summarizes the results from the BSDS-II test program. Composite materials evaluated include carbon fiber in both pre-impregnated and vacuum-assisted resin transfer molding (VARTM) forms. Initial thin-coupon static testing included a wide range of parameters, including variation in manufacturer, fiber tow size, fabric architecture, and resin type. A smaller set of these materials and process types was also evaluated in thin-coupon fatigue testing, and in ply-drop and ply-transition panels. The majority of materials used epoxy resin, with vinyl ester (VE) resin also used for selected cases. Late in the project, testing of unidirectional fiberglass was added to provide an updated baseline against which to evaluate the carbon material performance. Numerous unidirectional carbon fabrics were considered for evaluation with VARTM infusion. All but one fabric style considered suffered either from poor infusibility or waviness of fibers combined with poor compaction. The exception was a triaxial carbon-fiberglass fabric produced by SAERTEX. This fabric became the primary choice for infused articles throughout the test program. The generally positive results obtained in this program for the SAERTEX material have led to its being used in innovative prototype blades of 9-m and ...
Date: May 1, 2009
Creator: Griffin, Dayton A. (DNV Global Energy Concepts Inc., Seattle, WA)
Partner: UNT Libraries Government Documents Department

Advanced Simulation and Computing FY09-FY10 Implementation Plan Volume 2, Rev. 1

Description: The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must ...
Date: April 1, 2009
Creator: Kissel, L
Partner: UNT Libraries Government Documents Department