4 Matching Results

Search Results

FLP-mediated conditional loss of an essential gene to facilitate complementation assays

Description: Commonly, when it is desirable to replace an essential gene with an allelic series of mutated genes, or genes with altered expression patterns, the complementing constructs are introduced into heterozygous plants, followed by the selection of homozygous null segregants. To overcome this laborious and time-consuming step, the newly developed two-component system utilizes a site-specific recombinase to excise a wild-type copy of the gene of interest from transformed tissues. In the first component (the first vector), a wild-type version of the gene is placed between target sequences recognized by FLP recombinase from the yeast 2 μm plasmid. This construct is transformed into a plant heterozygous for a null mutation at the endogenous locus, and progeny plants carrying the excisable complementing gene and segregating homozygous knockout at the endogenous locus are selected. The second component (the second vector) carries the experimental gene along with the FLP gene. When this construct is introduced, FLP recombinase excises the complementing gene, leaving the experimental gene as the only functional copy. The FLP gene is driven by an egg apparatus specific enhancer (EASE) to ensure excision of the complementing cDNA in the egg cell and zygote following floral-dip transformation. The utility of this system is being tested using various experimental derivatives of the essential sucrose-proton symporter, AtSUC2, which is required for photoassimilate transport.
Date: December 2007
Creator: Ganesan, Savita
Partner: UNT Libraries

Gene Expression Profiling of the nip Mutant in Medicago truncatula

Description: The study of root nodule symbiosis between nitrogen-fixing bacteria and leguminous plant species is important because of the ability to supplement fixed nitrogen fertilizers and increase plant growth in poor soils. Our group has isolated a mutant called nip in the model legume Medicago truncatula that is defective in nodule symbiosis. The nip mutant (numerous infections with polyphenolics) becomes infected by Sinorhizobium meliloti but then accumulates polyphenolic defense compounds in the nodule and fails to progress to a stage where nitrogen fixation can occur. Analysis of the transcriptome of nip roots prior to inoculation with rhizobia was undertaken using Affymetric Medicago Genome Array microarrays. The total RNA of 5-day old uninoculated seedlings was analyzed in triplicate to screen for the NIP gene based on downregulated transcript levels in the mutant as compared to wild type. Further microarray data was generated from 10 days post inoculation (dpi) nip and wild type plants. Analysis of the most highly downregulated transcripts revealed that the NIP gene was not identifiable based on transcript level. Putative gene function was assigned to transcripts with altered expression patterns in order to characterize the nip mutation phenotypically as inferred from the transcriptome. Functional analysis revealed a large number of chaperone proteins were highly expressed in the nip mutant, indicating high stress in the mutant prior to infection by rhizobia. Additionally, a database containing the information regarding the nip expression profile at both 0 days post inoculation (dpi) and 10 dpi were created for screening of candidate genes as predicted from sequence in the genomic region containing NIP.
Date: August 2007
Creator: McKethan, Brandon Lee
Partner: UNT Libraries

Fluorescence labeling and computational analysis of the strut of myosin's 50 kDa cleft.

Description: In order to understand the structural changes in myosin S1, fluorescence polarization and computational dynamics simulations were used. Dynamics simulations on the S1 motor domain indicated that significant flexibility was present throughout the molecular model. The constrained opening versus closing of the 50 kDa cleft appeared to induce opposite directions of movement in the lever arm. A sequence called the "strut" which traverses the 50 kDa cleft and may play an important role in positioning the actomyosin binding interface during actin binding is thought to be intimately linked to distant structural changes in the myosin's nucleotide cleft and neck regions. To study the dynamics of the strut region, a method of fluorescent labeling of the strut was discovered using the dye CY3. CY3 served as a hydrophobic tag for purification by hydrophobic interaction chromatography which enabled the separation of labeled and unlabeled species of S1 including a fraction labeled specifically at the strut sequence. The high specificity of labeling was verified by proteolytic digestions, gel electrophoresis, and mass spectroscopy. Analysis of the labeled S1 by collisional quenching, fluorescence polarization, and actin-activated ATPase activity were consistent with predictions from structural models of the probe's location. Although the fluorescent intensity of the CY3 was insensitive to actin binding, its fluorescence polarization was notably affected. Intriguingly, the mobility of the probe increases upon S1 binding to actin suggesting that the CY3 becomes displaced from interactions with the surface of S1 and is consistent with a structural change in the strut due to cleft motions. Labeling the strut reduced the affinity of S1 for actin but did not prevent actin-activated ATPase activity which makes it a potentially useful probe of the actomyosin interface. The different conformations of myosin S1 indicated that the strut is not as flexible as several other key regions of myosin ...
Date: August 2007
Creator: Gawalapu, Ravi Kumar
Partner: UNT Libraries

Hindrance of the Myosin Power Stroke Posed by the Proximity to the Troponin Complex Identified Using a Novel LRET Fluorescent Nanocircuit

Description: A novel luminescence resonance energy transfer (LRET) nanocircuit assay involving a donor and two acceptors in tandem was developed to study the dynamic interaction of skeletal muscle contraction proteins. The donor transmits energy relayed to the acceptors distinguishing myosin subfragment-1 (S1) lever arm orientations. The last acceptor allows the detection of S1's bound near or in between troponin complexes on the thin filament. Additionally, calcium related changes between troponin T and myosin were detected. Based on this data, the troponin complex situated every 7 actin monomers, hinders adjacently bound myosins to complete their power stroke; whereas myosins bound in between troponin complexes undergo complete power strokes.
Date: May 2007
Creator: Coffee Castro-Zena, Pilar G.
Partner: UNT Libraries