Search Results

open access

The Use of Electrochemical Techniques to Characterize Wet Steam Environments

Description: The composition of a steam phase in equilibrium with a water phase at high temperature is remarkably affected by the varying capabilities of the water phase constituents to partition into the steam. Ionic impurities (sodium, chloride, sulfate, etc.) tend to remain in the water phase, while weakly ionic or gaseous species (oxygen) partition into the steam. Analysis of the water phase can provide misleading results concerning the steam phase composition or environment. This paper describes efforts that were made to use novel electrochemical probes and sampling techniques to directly characterize a wet steam phase environment in equilibrium with high temperature water. Probes were designed to make electrochemical measurements in the thin film of water existing on exposed surfaces in steam over a water phase. Some of these probes were referenced against a conventional high temperature electrode located in the water phase. Others used two different materials (typically tungsten and platinum) to make measurements without a true reference electrode. The novel probes were also deployed in a steam space removed from the water phase. It was necessary to construct a reservoir and an external, air-cooled condenser to automatically keep the reservoir full of condensed steam. Conventional reference and working electrodes were placed in the water phase of the reservoir and the novel probes protruded into the vapor space above it. Finally, water phase probes (both reference and working electrodes) were added to the hot condensed steam in the external condenser. Since the condensing action collapsed the volatiles back into the water phase, these electrodes proved to be extremely sensitive at detecting oxygen, which is one of the species of highest concern in high temperature power systems. Although the novel steam phase probes provided encouraging initial results, the tendency for tungsten to completely corrode away in the steam phase limited their usefulness. …
Date: April 30, 2003
Creator: Bussert, Bruce W.; Crowley, John A.; Kimball, Kenneth J. & Lashway, Brian J.
Partner: UNT Libraries Government Documents Department
open access

Material Properties Test to Determine Ultimate Strain and True Stress-True Strain Curves for High Yield Steels

Description: This testing was undertaken to develop material true stress-true strain curves for elastic-plastic material behavior for use in performing transient analysis. Based on the conclusions of this test, the true stress-true strain curves derived herein are valid for use in elastic-plastic finite element analysis for structures fabricated from these materials. In addition, for the materials tested herein, the ultimate strain values are greater than those values cited as the limits for the elastic-plastic strain acceptance criteria for transient analysis.
Date: April 1, 2003
Creator: Arpin, K. R. & Trimble, T. F.
Partner: UNT Libraries Government Documents Department
open access

Hybrid Sulfur Recovery Process for Natural Gas Upgrading Quarterly Report

Description: This first quarter report of 2003 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and off-shore applications. CrystaSulf{reg_sign} (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H{sub 2}S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H{sub 2}S in the natural gas is first oxidized to SO{sub 2} at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H{sub 2}S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. Previous reports described development of a catalyst with the required selectivity and efficiency for producing sulfur dioxide from H{sub 2}S. In the laboratory, the catalyst was shown to be robust and stable in the presence of several intentionally added contaminants, including condensate from the pilot plant site. Bench-scale catalyst testing at the CrystaSulf pilot plant using the actual pilot plant gas was …
Date: April 1, 2003
Creator: Dalrymple, Dennis
Partner: UNT Libraries Government Documents Department
open access

Surveillance of site A and plot M - report for 2002.

Description: The results of the environmental surveillance program conducted at Site A/Plot M in the Palos Forest Preserve area for Calendar Year 2002 are presented. Based on the results of the 1976-1978 radiological characterization of the site, a determination was made that a surveillance program be established. The characterization study determined that very low levels of hydrogen-3 (as tritiated water) had migrated from the burial ground and were present in two nearby hand-pumped picnic wells. The current surveillance program began in 1980 and consists of sample collection and analysis of surface and subsurface water. The results of the analyses are used to (1) monitor the migration pathway of water from the burial ground (Plot M) to the handpumped picnic wells, (2) establish if buried radionuclides other than hydrogen-3 have migrated, and (3) monitor the presence of radioactive and chemically hazardous materials in the environment of the area. Hydrogen-3 in the Red Gate Woods picnic wells was still detected this year, but the average and maximum concentrations were significantly less than found earlier. Hydrogen-3 continues to be detected in a number of wells, boreholes, dolomite holes, and a surface stream. Analyses since 1984 have indicated the presence of low levels of strontium-90 in water from a number of boreholes next to Plot M. The results of the surveillance program continue to indicate that the radioactivity remaining at Site A/Plot M does not endanger the health or safety of the public visiting the site, using the picnic area, or living in the vicinity.
Date: April 16, 2003
Creator: Golchert, N. W.
Partner: UNT Libraries Government Documents Department
open access

Contaminant Boundary at the Faultless Underground Nuclear Test

Description: The U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP) have reached agreement on a corrective action strategy applicable to address the extent and potential impact of radionuclide contamination of groundwater at underground nuclear test locations. This strategy is described in detail in the Federal Facility Agreement and Consent Order (FFACO, 2000). As part of the corrective action strategy, the nuclear detonations that occurred underground were identified as geographically distinct corrective action units (CAUs). The strategic objective for each CAU is to estimate over a 1,000-yr time period, with uncertainty quantified, the three-dimensional extent of groundwater contamination that would be considered unsafe for domestic and municipal use. Two types of boundaries (contaminant and compliance) are discussed in the FFACO that will map the three-dimensional extent of radionuclide contamination. The contaminant boundary will identify the region wi th 95 percent certainty that contaminants do not exist above a threshold value. It will be prepared by the DOE and presented to NDEP. The compliance boundary will be produced as a result of negotiation between the DOE and NDEP, and can be coincident with, or differ from, the contaminant boundary. Two different thresholds are considered for the contaminant boundary. One is based on the enforceable National Primary Drinking Water Regulations for radionuclides, which were developed as a requirement of the Safe Drinking Water Act. The other is a risk-based threshold considering applicable lifetime excess cancer-risk-based criteria The contaminant boundary for the Faultless underground nuclear test at the Central Nevada Test Area (CNTA) is calculated using a newly developed groundwater flow and radionuclide transport model that incorporates aspects of both the original three-dimensional model (Pohlmann et al., 1999) and the two-dimensional model developed for the Faultless data decision analysis (DDA) (Pohll and Mihevc, 2000). This new model includes the uncertainty …
Date: April 1, 2003
Creator: Pohll, Greg; Pohlmann, Karl; Daniels, Jeff; Hassan, Ahmed & Chapman, Jenny
Partner: UNT Libraries Government Documents Department
open access

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma Quarterly Technical Progress Report: January-March 2003

Description: West Carney Field produces from Hunton Formation. All the wells produce oil, water and gas. The main objective of this study is to understand the unique behavior observed in the field. This behavior includes: (1) Decrease in WOR over time; (2) Decrease in GOR at initial stages; (3) High decline rates of oil and gas; and (4) strong hydrodynamic connectivity between wells. This report specifically addresses two issues relevant to our understanding of the West Carney reservoir. By using core and log data as well as fluorescence information, we demonstrate that our hypothesis of how the reservoir is formed is consistent with these observations. Namely, oil migrated in water wet reservoir, over time, oil changed the wettability of some part of the reservoir, oil eventually leaked to upper formations prompting re-introduction of water into reservoir. Because of change in wettability, different pore size distributions responded differently to water influx. This hypothesis is consistent with fluorescence and porosity data, as we explain it in this quarterly report. The second issue deals with how to best calculate connected oil volume in the reservoir. The log data does not necessarily provide us with relevant information regarding oil in place. However, we have developed a new material balance technique to calculate the connected oil volume based on observed pressure and production data. By using the technique to four different fields producing from Hunton formation, we demonstrate that the technique can be successfully applied to calculate the connected oil in place.
Date: April 1, 2003
Creator: Kelkar, Mohan
Partner: UNT Libraries Government Documents Department
open access

Calcite Precipitation and Trace Metal Partitioning in Groundwater and the Vadose Zone: Remediation of Strontium-90 and Other Divalent Metals and Radionuclides in Arid Western Environments

Description: In situ remediation is an emerging technology that will play an important role in DOE's environmental restoration program, and is an area where enhancement in fundamental understanding will lead to significantly improved cleanup tools. In situ remediation technologies have inherent advantages because they do not require the costly removal, transport, and disposal of contamination. In addition, these technologies minimize worker exposure because contaminated materials are not brought to the surface. Finally, these technologies will minimize the generation of secondary waste streams with their associated treatment and disposal. A particularly promising in situ remediation technology is bioremediation. For inorganic contaminants such as radionuclides and metals, in situ bioremediation can be used to alter the mobility or reduce the toxicity of radionuclides and metals by changing the valence state of the radionuclides and metals, degrading or producing complexing ligands, or facilitating partitioning on to or off of solid phases. The purpose of the research presented here was to explore microbially facilitated partitioning of metal and radionuclides by their co-precipitation with calcium carbonate. Although this approach is a very attractive cleanup alternative, its practical implementation requires improved scientific understanding of the geochemical and biological mechanisms involved, particularly with respect to rates and mechanisms of microbially facilitated calcite precipitation. Of interest for this investigation is the in situ manipulation of calcite precipitation by the microbially catalyzed hydrolysis of urea. The production of ammonia during microbial decomposition of urea tends to drive pH upwards, and results in formation of alkaline conditions. When solution concentrations of Ca2+ and HCO3- are high enough, calcium carbonate precipitation may occur. A series of water samples collected from four wells tapping the aquifer underlying Eastern Snake River Plain (ESRP) in the vicinity of the Idaho National Engineering and Environmental Laboratory (INEEL) all tested positively for the presence of urea degrading …
Date: April 12, 2003
Creator: Ferris, F. Grant
Partner: UNT Libraries Government Documents Department
open access

Development of ODS Heat Exchanger Tubing Progress Report

Description: Due to extenuating circumstances Special Metals Corporation is terminating their role as prime contractor with this Vision 21 project. In response to this situation, a status report for the project as of this date, has been prepared and follows. Significant work has been accomplished on three major tasks of this project--increasing the circumferential strength of MA956 tubing, joining of the MA956 alloy, and determination of the high temperature corrosion limits of the MA956 alloy. With respect to increasing the circumferential strength of a MA956 tube, the first rod extrusion campaign has been completed with microstructure analysis providing valuable information on the strengthening mechanism of this alloy. Also, based on the results obtained thus far extrusions of tubes are in process and creep testing to determine the ''stress threshold'' curves for this alloy continues. Regarding joining of the MA956 alloy, welds have been produced using the friction, explosive, magnetic impulse, and diffusion bonding techniques. Complete elevated temperature mechanical testing has not been conducted on joints produced using these methods, however room temperature tensile and shear testing has shown promising results on friction and explosive welds. And finally, laboratory high temperature corrosion testing of the material continues in both fluid-side and fire-side simulated environments. Brief summary status statements from each of the subcontractors is appended to this report which additionally contains the expected funding needed to complete the project.
Date: April 1, 2003
Creator: Mark A. Harper, Ph.D.
Partner: UNT Libraries Government Documents Department
open access

Aqueous corrosion of aluminum-based nuclear fuel.

Description: As part of the U.S. National Spent Nuclear Fuel Program, aluminide fuels (UAl{sub x}) are being tested under conditions that might exist in the proposed repository at Yucca Mountain, Nevada. Intermittent drip tests at 90 C were completed for up to 183 days on partially declad, unirradiated, low-enriched UAl{sub x} samples. Through 183 days of exposure to modified water from the J-13 well at 90 C, the fuel coupon remained in good mechanical condition. Only a tarnishing of the surface was observed and no spalled products were found in the fuel holder. The mechanism for alteration is consistent with that observed from dry oxidation experiments on UAl{sub x} (for the initial corrosion) and humid UO{sub 2} oxidation (for the subsequent paragenesis). Specifically, solid-state conversion of UAl{sub x} into UO{sub 2} and oxidized Al is followed by further oxidation, dissolution of the uranium, and reprecipitation as uranyl oxyhydroxides. The release rate of uranium varied from 0.23 to 2.9 mg/m{sup 2}/day (avg. = 0.97 mg U/m{sup 2}/day) depending on the specimen and test interval, but was similar in magnitude to that observed in earlier flow-through and drip tests with irradiated UAl{sub x} and UO{sub 2}. Most (mean=87%) of the released uranium sorbed to the vessel walls. Colloids were detected in the leachate samples, and dynamic light scattering of aliquots from most sampling periods favored a polydisperse distribution typical of environmental samples. In addition, the light scattering intensities measured in these tests were much higher than any measured from UO{sub 2} fuel tests in our laboratory. Electron microscopy of the colloids indicated that the colloids were individual and agglomerated silicates and aluminosilicates. No distinct uranium-rich colloids were found, although dissolved uranium would be expected to sorb to aluminosilicate colloids. In conclusion, the UAl{sub x} corroded slowly, releasing uranium at a rate comparable to …
Date: April 23, 2003
Creator: Kaminski, M.
Partner: UNT Libraries Government Documents Department
open access

Examine and Evaluate a Process to Use Salt Caverns to Receive Ship Borne Liquefied Natural Gas: Final Report

Description: The goal of the U.S. Department of Energy cooperative research project is to define, describe, and validate, a process to utilize salt caverns to receive and store the cargoes of LNG ships. The project defines the process as receiving LNG from a ship, pumping the LNG up to cavern injection pressures, warming it to cavern compatible temperatures, injecting the warmed vapor directly into salt caverns for storage, and distribution to the pipeline network. The performance of work under this agreement is based on U.S. Patent 5,511,905, and other U.S. and Foreign pending patent applications. The cost sharing participants in the research are The National Energy Technology Laboratory (U.S. Department of Energy), BP America Production Company, Bluewater Offshore Production Systems (U.S.A.), Inc., and HNG Storage, L.P. Initial results indicate that a salt cavern based receiving terminal could be built at about half the capital cost, less than half the operating costs and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. There is a significant body of knowledge and practice concerning natural gas storage in salt caverns, and there is a considerable body of knowledge and practice in handling LNG, but there has never been any attempt to develop a process whereby the two technologies can be combined. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or terrorist acts, and much more acceptable to the community. The project team developed conceptual designs of two salt cavern based LNG terminals, one with caverns located in Calcasieu Parish Louisiana, and the second in Vermilion block 179 about 50 miles offshore Louisiana. These conceptual designs were compared to conventional tank based LNG terminals and demonstrate superior security, economy and capacity. The potential for the …
Date: April 24, 2003
Creator: McCall, Michael M.; Bishop, William M. & Scherz, D. Braxton
Partner: UNT Libraries Government Documents Department
open access

Distribution System of the Future

Description: The distribution system of the future is going to be as much of a revolution to the electric energy industry as the wireless telephone has been to consumer communications. An electricity market transformation must occur before the changes can take place, but this evolution is already starting to occur in many parts of the country. In this paper, we discuss a vision for a future distribution system, areas that will be key for technology development, and the advantages of the new electricity market. Present day distribution systems are in a sense, unintelligent. Distribution systems respond to faults, or short circuits, by sensing the very high fault current and then opening circuit breakers to isolate the fault. Some newer automated systems determine fault location and then close other circuit breakers to provide an alternate path for power after the fault so that the number of customers left without power is minimized, but the extent of the reconfiguration is limited. Distribution systems also have some methods to regulate voltage, but there is little real time local response to contingencies such as loss of a transmission line or a generator. In present day distribution systems, there is very little control of load, or demand response, and Distributed Energy Resources (DER, distributed generation, storage, and responsive load) located in the distribution system are prohibited from even regulating voltage. In fact, industry standards and utility interconnection agreements typically require that when a contingency occurs on a distribution or transmission system that results in a voltage or frequency excursion, the DER is to disconnect rather than help. There is a pressing need to evolve the distribution system model to one that can respond to contingencies sensed locally, and has the local intelligence and autonomy to deal with contingencies such as unusual loading, transmission congestion, and line …
Date: April 23, 2003
Creator: Kueck, JD
Partner: UNT Libraries Government Documents Department
open access

A Real Time Coal Content/Ore Grade (C2OG) Sensor, Technical Report: January - March 2003

Description: This seventh quarterly technical report discusses the progress made on a machine vision technique for determining coal content and ore grades. Considerable progress has been made on coal analysis. Naval Research Laboratory (NRL) target recognition software has been tested and incorporated into the system. This software decreases analysis time considerably and is more intuitive to use. Work with board-level computers has proceeded well; ultimately this will make the technology more compact and fieldable. Work with talc will be delayed because the graduate student working on this project is leaving the program. Ongoing work is devoted to more detailed coal analysis, improving the software interface, and developing procedures and a users manual.
Date: April 28, 2003
Creator: Swanson, Rand
Partner: UNT Libraries Government Documents Department
open access

METHANE de-NOX FOR UTILITY PC BOILERS

Description: During the current quarter, pilot scale testing was continued with the modified combustor and modified channel burner using the new PRB coal delivered in late December. Testing included benchmark testing to determine whether the system performance was comparable to that with the previous batch of PRB coal, baseline testing to characterize performance of the PC Burner without coal preheating, and parametric testing to evaluate the effect of various preheat combustor and PC burner operating variables, including reduced gas usage in the preheat combustor. A second version of the PC burner in which the secondary air channels were closed and replaced with six air nozzles was then tested with PRB coal. Plans were developed with RPI for the next phase of testing at the 100 million Btu/h scale using RPI's Coal Burner Test Facility (CBTF). A cost estimate for preparation of the CBTF and preheat burner system design, installation and testing was then prepared by RPI.
Date: April 1, 2003
Creator: Rabovitser, Joseph; Bryan, Bruce; Nester, Serguei & Wohadlo, Stan
Partner: UNT Libraries Government Documents Department
open access

Cavity Expansion: A Library for Cavity Expansion Algorithms, Version 1.0

Description: Cavity expansion is a method for modeling the penetration of an axisymmetric or wedge-shaped solid body--a penetrator--into a target by using analytic expressions to capture the effects of the target on the body. Cavity expansion has been implemented as a third-party library (CavityExpansion) that can be used with explicit, transient dynamics codes. This document describes the mechanics of the cavity expansion model implemented as a third-party library. This document also describes the applications interface to CavityExpansion. A set of regression tests has been developed that can be used to test the implementation of CavityExpansion in a transient dynamics code. The mechanics of these tests and the expected results from the tests are described in detail.
Date: April 1, 2003
Creator: BROWN, KEVIN H.; KOTERAS, JAMES R.; LONGCOPE, DONALD B. & WARREN, THOMAS L.
Partner: UNT Libraries Government Documents Department
open access

Active Cathodes for Super-High Power Density Solid Oxide Fuel Cells Through Space Charge Effects Quarterly Report: October 2002 - January 2003

Description: This report summarizes the work done during the first quarter of the project. Effort was directed in three areas: (1) The determination of the role of ionic conductor morphology, used in composite cathodes, on the ionic conductivity of the ionic conductor. It was shown that if the particles are not well sintered, the necks formed between particles will be very narrow, and the resulting conductivity will be too low (resistivity will be too high). Specifically, a mathematical equation was derived to demonstrate the singular nature of conductivity. (2) Nanosize powders of Sc-doped CeO{sub 2} were prepared by combustion synthesis. The rationale is that the particle size of the composite electrode must be as small as possible to ensure a high ionic conductivity--and resulting in high performance in fuel cells. Di-gluconic acid (DGA) was used as fuel. The process led to the formation of nanosize Sc-doped CeO{sub 2}. The powder was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). (3) Samples were sintered to form materials containing various levels of porosity, from {approx}3% to {approx}43%. Conductivity was measured over a range of temperatures by four probe DC method. It was observed that in highly porous samples, the conductivity was far lower than can be expected purely based on total porosity. The difference could be rationalized on the basis of the theoretical model developed.
Date: April 14, 2003
Creator: Virkar, Professor Anil V.
Partner: UNT Libraries Government Documents Department
open access

PHASE II CALDERON PROCESS TO PRODUCE DIRECT REDUCED IRON RESEARCH AND DEVELOPMENT PROJECT

Description: This project was initially targeted to the making of coke for blast furnaces by using proprietary technology of Calderon in a phased approach, and Phase I was successfully completed. The project was then re-directed to the making of iron units. U.S. Steel teamed up with Calderon for a joint effort which will last 30 months to produce directly reduced iron with the potential of converting it into molten iron or steel consistent with the Roadmap recommendations of 1998 prepared by the Steel Industry in cooperation with the Department of Energy.
Date: April 28, 2003
Creator: Calderon, Albert
Partner: UNT Libraries Government Documents Department
open access

Field Demonstration of a Membrane Process to Separate Nitrogen From Natural Gas Progress Report

Description: The original proposal described the construction and operation of a 1 MMscfd treatment system to be operated at a Butcher Energy gas field in Ohio. The gas produced at this field contained 17% nitrogen. During precommissioning of the project, a series of well tests showed that the amount of gas in the field was significantly smaller than expected and that the nitrogen content of the wells was very high (25 to 30%). After evaluating the revised cost of the project, Butcher Energy decided that the plant would not be economical and withdrew from the project. Membrane Technology and Research, Inc. (MTR) continued to negotiate a marketing and sales partnership with ABB Lummus Global, a large multinational corporation. MTR will be working with their Randall Gas Technology group, a supplier of equipment and processing technology to the natural gas industry.
Date: April 10, 2003
Creator: Costa, Dr. Andre Da
Partner: UNT Libraries Government Documents Department
open access

Examples of cooler reflective streets for urban heat-island mitigation : Portland cement concrete and chip seals

Description: Part of the urban heat island effect can be attributed to dark pavements that are commonly used on streets and parking lots. In this paper we consider two light colored, hence cooler, alternative paving materials that are in actual use in cities today. These are Portland cement concrete (PCC) pavements and chip seals. We report measurements of the albedos of some PCC and chip sealed pavements in the San Francisco Bay Area. The albedos of the PCC pavements ranged from about 0.18 to 0.35. The temperatures of some PCC pavements are also measured and calculated. We then consider how the albedos of the constituent materials of the PCC (stone, sand and cement) contribute to the albedos of the resulting finished concrete. The albedos of a set of chip sealed pavements in San Jose, CA, were measured and correlated with the times of their placement. It is found that the albedos decrease with age (and use) but remain higher than that of standard asphalt concrete (AC) for about five years. After t hat, the albedos of the chip seals are about 0.12, similar to aged AC. The fact that many PCC pavements have albedos at least twice as high as aged AC suggests that it is possible to have pavement albedos that remain high for many years.
Date: April 30, 2003
Creator: Pomerantz, M.; Akbari, H.; Chang, S. C.; Levinson, R. & Pon, B.
Partner: UNT Libraries Government Documents Department
open access

Oxygen Enhanced Combustion for NOx Control, Quarterly Technical Progress Report: January 1 - March 31, 2003

Description: This quarterly technical progress report will summarize work accomplished for the Program through the twelfth quarter, January-March 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Pilot scale experiments conducted at the University of Utah explored both the effectiveness of oxygen addition and the best way to add oxygen with a scaled version of Riley Power's newest low NOx burner design. CFD modeling was done to compare the REI's modeling results for James River Unit 3 with the NOx and LOI results obtained during the demonstration program at that facility. Investigation of an alternative method of fabrication of PSO1d elements was conducted. OTM process development work has concluded with the completion of a long-term test of a PSO1d element Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Proposals have been submitted for two additional beta test sites. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.
Date: April 1, 2003
Creator: Thompson, David R.; Bool, Lawrence E. & Chen, Jack C.
Partner: UNT Libraries Government Documents Department
open access

Rotary Burner Demonstration

Description: The subject technology, the Calcpos Rotary Burner (CRB), is a burner that is proposed to reduce energy consumption and emission levels in comparison to currently available technology. burners are used throughout industry to produce the heat that is required during the refining process. Refineries seek to minimize the use of energy in refining while still meeting EPA regulations for emissions.
Date: April 30, 2003
Creator: Flanagan, Paul
Partner: UNT Libraries Government Documents Department
open access

DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

Description: In full-scale boilers, the effect of biomass cofiring on NO{sub x} and unburned carbon (UBC) emissions has been found to be site-specific. Few sets of field data are comparable and no consistent database of information exists upon which cofiring fuel choice or injection system design can be based to assure that NOX emissions will be minimized and UBC be reduced. This report presents the results of a comprehensive project that generated an extensive set of pilot-scale test data that were used to validate a new predictive model for the cofiring of biomass and coal. All testing was performed at the 3.6 MMBtu/hr (1.75 MW{sub t}) Southern Company Services/Southern Research Institute Combustion Research Facility where a variety of burner configurations, coals, biomasses, and biomass injection schemes were utilized to generate a database of consistent, scalable, experimental results (422 separate test conditions). This database was then used to validate a new model for predicting NO{sub x} and UBC emissions from the cofiring of biomass and coal. This model is based on an Advanced Post-Processing (APP) technique that generates an equivalent network of idealized reactor elements from a conventional CFD simulation. The APP reactor network is a computational environment that allows for the incorporation of all relevant chemical reaction mechanisms and provides a new tool to quantify NOx and UBC emissions for any cofired combination of coal and biomass.
Date: April 30, 2003
Creator: Felix, Larry G.; Bush, P. Vann & Niksa, Stephen
Partner: UNT Libraries Government Documents Department
open access

Tank 31H Saltcake Dissolution Tests

Description: This study provides data useful to understanding the salt equilibrium thermodynamics and the transient physical and chemical properties of the dissolved salt solutions.
Date: April 2, 2003
Creator: Martino, C.J.
Partner: UNT Libraries Government Documents Department
Back to Top of Screen