6 Matching Results

Search Results

Advanced search parameters have been applied.

Thermodynamics and electrodynamics of unusual narrow-gap semiconductors

Description: This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL) that has led to a fully funded DOE program to continue this work. The project was directed toward exploring the Ettingshausen effect, which is the direct extension of the familiar Peltier-effect refrigerator (the process used in popular coolers that run off automotive electrical power) in which a magnetic field is used to enhance refrigeration effects at temperatures well below room temperature. Such refrigeration processes are all-solid-state and are of potentially great commercial importance, but essentially no work has been done since the early 1970s. Using modern experimental and theoretical techniques, the authors have advanced the state-of-the-art significantly, laying the groundwork for commercial cryogenic solid-state refrigeration.
Date: December 1998
Creator: Migliori, A.; Darling, T. W.; Trugman, S. A.; Freibert, F.; Moshopoulou, E. & Sarrao, J. L.
Partner: UNT Libraries Government Documents Department

Task 38 - commercial mercury remediation demonstrations: Thermal retorting and physical separation/chemical leaching. Topical report, December 1, 1994--June 30, 1996

Description: Results are presented on the demonstration of two commercial technologies for the removal of mercury from soils found at natural gas metering sites. Technologies include a thermal retorting process and a combination of separation, leaching, and electrokinetic separation process.
Date: December 31, 1998
Creator: Charlton, D.S.; Fraley, R.H. & Stepan, D.J.
Partner: UNT Libraries Government Documents Department

Quantum Suppression of beamstrahlung for future linearcolliders

Description: Beamstrahhmg at interaction point may present severe lim- itations on linear collider performance. The approach to re- duce this effect adopted for all current designs at 0.5 TeV will become more difficult and less effective at higher en- ergy. We discuss the feasibility of an alternative approach, based on an effect known as quantum suppression of beam- strahlung, for future linear colliders at multi-TeV energy.
Date: June 1, 1998
Creator: Xie, Ming
Partner: UNT Libraries Government Documents Department

Light-fronts approach to electron-positron pair production in ultrarelativistic heavy-ion collisions

Description: The authors solve, in an ultrarelativistic limit, the time-dependent Dirac equation describing electron-positron pair production in peripheral relativistic heavy ion collisions using light front variables and a light-fronts representation, obtaining nonperturbative results for the free pair-creation amplitudes in the collider frame. Their result reproduces the result of second-order perturbation theory in the small charge limit while nonperturbative effects arise for realistic charges of the ions.
Date: March 1, 1998
Creator: Wells, J. C. & Segev, B.
Partner: UNT Libraries Government Documents Department

Microfluidic Engineering

Description: The ability to generate high pressures using electrokinetic pumping of liquid through porous media is reported. Pressures in excess of 8000 psi have been achieved using capillaries (< 100 {micro}m i.d.) packed with micron-size silica beads. A model is presented which accurately predicts absolute pressures, flowrates and power conversion efficiencies as well as the experimentally observed dependencies on pore size, applied electric field and electrical properties of the fluid. This phenomenon offers the possibility of creating a new class of microscale fluid devices, electrokinetic pumps and valves, where the performance improves with scale-down by taking advantage of microscale processes.
Date: December 1, 1998
Creator: Paul, Phillip H.
Partner: UNT Libraries Government Documents Department

The equation of motion of an electron.

Description: We review the current status of understanding of the equation of motion of an electron. Classically, a consistent linearized theory exists for an electron of finite extent, as long as the size of the electron is larger than the classical electron radius. Nonrelativistic quantum mechanics seems to offer a fine theory even in the point particle limit. Although there is as yet no convincing calculation, it is probable that a quantum electrodynamical result will be at least as well-behaved as is the nonrelativistic quantum mechanical results.
Date: September 2, 1998
Creator: Kim, K.-J.
Partner: UNT Libraries Government Documents Department