7 Matching Results

Search Results

Advanced search parameters have been applied.

A comparison of the costs of treating wastes from a radio analytical laboratory

Description: The Radiological and Environmental Sciences Laboratory (RESL) is a government-owned, government-operated facility at the Idaho National Engineering Laboratory (INEL). RESL`s traditional strengths are in precise radionuclide analysis and dosimetry measurements. RESL generates small quantities of various types of waste. This study identified potential waste management options for a solvent extraction process waste stream and the cost differences resulting from either process changes, improved technology usage, or material substitutions or changes at RESL. Where possible, this report identifies changes that have resulted or may result in waste reduction and cost savings. DOE P2 directs the lab to review processes, evaluate waste practices, and estimate potential reductions in waste volumes and waste management costs. This study focused on selected processes, but the processes are illustrative of potential waste volume reductions and cost minimizations that may be achieved elsewhere at the INEL and throughout the DOE complex. In analyzing a waste disposal process, the authors allocated component costs to functional categories. These categories included the following: (1) operational costs, included waste generation and collection into a storage area; (2) administrative costs, including worker training, routine inspections, and reporting; and (3) disposal costs, including preparing the waste for shipment and disposing of it.
Date: April 1, 1996
Creator: Moore, R. & Pole, S.B.
Partner: UNT Libraries Government Documents Department

Solvent usage and recycling potential in a research and development setting

Description: Argonne National Laboratory utilizes thousands of gallons of chemicals each year. Laboratory wastes can be broadly characterized as coming from three focus areas: (1) restoration and decommissioning associated wastes generate larger quantities of waste on a one-time basis. The wastes may be non-hazardous to highly toxic and the quantities are variable. (2) Laboratory operations generate approximately 50% of all waste disposed. Operational waste can be characterized as less hazardous, reasonably consistent in nature, generally in larger quantities. (3) the final waste stream is small quantities of many different materials coming from many different waste streams. This waste stream is at the center of ANL`s pollution prevention program. The research areas have implemented many pollution prevention techniques. Solvent substitution has been effective in reducing hazardous cleaning wastes, scintillation cocktail wastes, and other chlorinated wastes. Micro chemistry is effective at minimizing certain chemical process wastes, developing new analytical chemistry procedures has reduced and eliminated other waste forms. New instrumentation has provided first level reductions in many waste streams. Despite these new techniques solvent usage remains the largest research related waste stream. The present solvents are generated from instruments such as electrophoresis and high pressure liquid chromatographs (HPLC), solvent extractions, biological staining and cleaning practices. ANL recognizes the significant role recycling this waste stream is in Pollution Prevention Program implementation. ANL initiated a study to quantify solvent usage, characterization of the waste solvent, and match the purity requirements exploring all opportunities to substitute and recycle.
Date: July 1, 1996
Creator: Vivio, F.; Thuot, J.R. & Peters, R.W.
Partner: UNT Libraries Government Documents Department

Separation of Fischer-Tropsch wax from catalyst using supercritical fluid extraction. Quarterly technical progress report, April 1, 1996--June 30, 1996

Description: The objective of this research project is to evaluate the potential of SCF extraction for separating the catalyst slurry of a Fischer- Tropsch (F-T) slurry bubble column (SBC) reactor into two fractions: (1) a catalyst-free wax containing less than 10 ppm particulate matter and (2) a concentrated catalyst slurry that is ready for recycle or regeneration. The wax will be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200-300{degrees}C. Initial work is being performed using n-hexane as the solvent. The success of the project depends on two major factors. First, the supercritical solvent must be able to dissolve the F-T wax; furthermore, this must be accomplished without entraining the solid catalyst. Second, the extraction must be controlled so as not to favor the removal of the low molecular weight wax compounds, i.e., a constant carbon-number distribution of the alkanes in the wax slurry must be maintained at steady-state column operation. To implement our objectives, the following task structure is being implemented: Task 1 equilibrium solubility measurements; Task 2 thermodynamic modeling; and Task 3 process design studies. Progress reports are presented for each task.
Date: November 1, 1996
Creator: Joyce, P.C. & Thies, M.C.
Partner: UNT Libraries Government Documents Department

Separation of Fischer-Tropsch wax from catalyst using supercritical fluid extraction. Quarterly technical progress report, 1 January 1996--31 March 1996

Description: The objective of this research project is to evaluate the potential of supercritical fluid extraction for separating the catalyst slurry of a Fischer-Tropsch (F-T) slurry bubble column (SBC) reactor into two fractions: (1) a catalyst-free wax containing less than 10 ppm particulate matter and (2) a concentrated catalyst slurry that is ready for recycle or regeneration. The wax will be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200--300 {degrees}C. Initial work is being performed using n-hexane as the solvent. The success of the project depends on two major factors. First, the supercritical solvent must be able to dissolve the F-T wax; furthermore, this must be accomplished without entraining the solid catalyst. Second, the extraction must be controlled so as not to favor the removal of the low molecular weight wax compounds, i.e., a constant carbon-number distribution of the alkanes in the wax slurry must be maintained at steady-state column operation. During this quarter work focused on task 1b, experimental measurement of selected model systems. Vapor-liquid equilibrium experiments for the n- hexane/squalane system, which we initiated in the previous quarter, were continued and results are discussed in this report.
Date: September 1, 1996
Creator: Joyce, P.C. & Thies, M.C.
Partner: UNT Libraries Government Documents Department

Separation of Fischer-Tropsch wax from catalyst using supercritical fluid extraction. Quarterly technical progress report, 1 October 1995--31 December 1995

Description: The objective of this research project is to evaluate the potential of supercritical fluid (SCF) extraction for separating the catalyst slurry of a Fischer-Tropsch slurry bubble column (SBC) reactor into two fractions: (1) a catalyst-free wax containing less than 10 ppm particulate matter and (2) a concentrated catalyst slurry that is ready for recycle or regeneration. The wax will be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e., 200-300{degrees}C. Initial work is being performed using n-hexane as the solvent. During the reporting period, work on the small-scale, continuous-flow apparatus continued. Initial experiments have been performed on a binary mixture of n-hexane (solvent) and squalane (model compound) at 200{degrees}C. A total of fifteen samples were collected at 135, 160, and 208 psig, with pressures being controlled to within {plus_minus}2 psi. Results indicate that the equilibrium phase compositions can in principle be measured to a reproducibility of {plus_minus}0.5% in the squalane-rich bottomphase and {plus_minus}2% in the hexane-rich top phase, with respect to the minor component. However, other data measured at these same conditions at another time exhibited scatter that was as much as 5 times greater. We believe that improvements in (1) the method of preheating the feed to the view cell/phase separator and to (2) the sample collection technique are required before data of high accuracy can consistently be generated. The apparatus modifications required to effect these improvements are currently underway and should be completed by the middle of February.
Date: June 1, 1996
Creator: Thies, M.C. & Joyce, P.C.
Partner: UNT Libraries Government Documents Department

Fischer Tropsch synthesis in supercritical fluids. Quarterly technical progress report, October 1--December 31, 1995

Description: Objectives for this quarter were to attempt to develop a model to predict the molecular diffusion coefficients to a high degree of accuracy so the authors may be able to predict both the molecular diffusion coefficient and thus the effective diffusivity a priori. They are working on a semi-empirical equation based on the rough hard sphere theory to predict diffusion coefficients in supercritical fluids. In addition, they planned to take additional data in order to extend the database available for development of the predictive equation. The paper discusses accomplishments and problems related to the diffusion coefficients of F-T products in supercritical fluids. Data are presented on the diffusion coefficients of 1-octene in ethane, propane, and hexane.
Date: June 1, 1996
Creator: Akgerman, A. & Bukur, D.B.
Partner: UNT Libraries Government Documents Department

Separation of Fischer-Tropsch wax from catalyst by supercritical extraction. Quarterly report, July 1, 1996 - September 30, 1996

Description: The objective of this research projects is to evaluate the potential of SCF extraction for separating the catalyst slurry of a Fischer- Tropsch (F-T) slurry bubble column (SBC) reactor into two fractions: (1) a catalyst-free wax containing less than 10 ppm particulate matter and (2) a concentrated catalyst slurry that is ready for recycle or regeneration. The wax will be extracted with a hydrocarbon solvent that has a critical temperature near the operating temperature of the SBC reactor, i.e. 200-300{degrees}C. Initial work is being performed using n-hexane as the solvent. The success of the projects depends on two major factors. First, the supercritical solvent must be able to dissolve the F-T wax; furthermore, the must be accomplished without entraining the solid catalyst. Second, the extraction must be controlled so as not to favor the removal of the low molecular weight wax compounds, i.e., a constant carbon-number distribution of the alkanes in the wax slurry must be maintained at steady-state column operation. The project includes three tasks (1) equilibrium solubility measurements, (2) thermodynamic modeling, and (3) process design studies.
Date: December 31, 1996
Creator: Joyce, P.C.; Thies, M.C.; Sherrard, D.; Biales, J.; Kilpatrick, P. & Roberts, G.
Partner: UNT Libraries Government Documents Department