25 Matching Results

Search Results

Advanced search parameters have been applied.

Circulating water subsystem design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant

Description: The Circulating Water System is a subsystem within the Heat Rejection Group (HRG). The Circulating Water System consists of two independent loops to remove waste heat from the turbine building closed cooling water system and from the condensers associated with each turbine generator set. In normal plant operation circulating water is pumped from the cooling tower basin through the condensers and heat exchangers and back to the cooling tower where the waste heat is released to the atmosphere via mechanical draft cooling towers. The system consists of two flow paths with two half-size, vertical pumps associated with each path.
Date: June 1, 1986
Partner: UNT Libraries Government Documents Department

USA/FRG umbrella agreement for cooperation in GCR [Gas Cooled Reactor] development: Fuel, fission products and graphite subprogram. Part 1, Management meeting report: Part 2, Revised subprogram plan, Revision 10

Description: This Subprogram Plan describes cooperative work in the areas of HTR fuel and graphite development and fission product studies that is being carried out under US/FRG/Swiss Implementing Agreement for cooperation in Gas Cooled Reactor development. Only bilateral US/FRG cooperation is included, since it is the only active work in this subprogram area at this time. The cooperation has been in progress since February 1977. A number of Project Work Statements have been developed in each of the major areas of the subprogram, and work on many of them is in progress. The following specific areas are included in the scope of this plan: fuel development; graphite development; fission product release; and fission product behavior outside the fuel elements.
Date: May 1, 1986
Partner: UNT Libraries Government Documents Department

Makeup water treatment and auxiliary boiler building structural design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant

Description: The Makeup Water Treatment and Auxiliary Boiler Building (MWABB) is a grade-founded, single-story, steel-framed structure with insulated sheet metal exterior walls and roof decking. It houses the electrically-heated auxiliary boiler and related equipment, and the Raw Water Treatment System. The Makeup Water Treatment and Auxiliary Boiler building is located adjacent to the Maintenance Building in the Energy Conversion Area of the plant.
Date: June 1, 1986
Partner: UNT Libraries Government Documents Department

Liquid radioactive waste subsystem design description

Description: The Liquid Radioactive Waste Subsystem provides a reliable system to safely control liquid waste radiation and to collect, process, and dispose of all radioactive liquid waste without impairing plant operation. Liquid waste is stored in radwaste receiver tanks and is processed through demineralizers and temporarily stored in test tanks prior to sampling and discharge. Radwastes unsuitable for discharge are transferred to the Solid Radwaste System.
Date: June 1, 1986
Partner: UNT Libraries Government Documents Department

Class 1E dc power subsystem design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant

Description: The Class 1E DC Power System of the Electrical Group provides reliable and regulated 125 V dc electric power to the plant safety-related dc loads connected to the Four redundant and independent 125 V dc Class 1E buses to ensure plant safe shutdown or mitigate the effects of a design basis event. These four dc buses comprise the plant four Class 1E dc control and instrument channels (A, B, C and D).
Date: June 1, 1986
Partner: UNT Libraries Government Documents Department

Pressure relief subsystem design description

Description: The primary function of the Pressure Relief Subsystem, a subsystem of the Vessel System, is to provide overpressure protection to the Vessel System. When the overpressure setpoint is reached, pressure is reduced by permitting the flow of primary coolant out of the Vessel System. This subsystem also provides the flow path by which purified helium is returned to the vessel system, either as circulating purge/flow from the Helium Purification Subsystem or make-up helium from the Helium Storage and Transfer Subsystem.
Date: July 1, 1986
Partner: UNT Libraries Government Documents Department

Probabilistic risk assessment of the modular HTGR plant. Revision 1

Description: A preliminary probabilistic risk assessment (PRA) has been performed for the modular HTGR (MHTGR). This PRA is preliminary in the context that although it updates the PRA issued earlier to include a wider spectrum of events for Licensing Basis Events (LBE) selection, the final version will not be issued until later. The primary function of the assessment was to assure compliance with the NRC interim safety goals imposed by the top-level regulatory criteria, and utility/user requirements regarding public evacuation or sheltering. In addition, the assessment provides a basis for designer feedback regarding reliability allocations and barrier retention requirements as well as providing a basis for the selection of licensing basis events (LBEs) and the safety classification of structures, systems, and components. The assessment demonstrates that both the NRC interim safety goals and utility/user imposed sheltering/evacuation requirements are satisfied. Moreover, it is not anticipated that design changes introduced will jeopardize compliance with the interim safety goals or utility/user requirements. 61 refs., 48 figs., 24 tabs.
Date: June 1, 1986
Creator: Everline, C.J.; Bellis, E.A. & Vasquez, J.
Partner: UNT Libraries Government Documents Department

350 MW(t) design fuel cycle selection. Revision 1

Description: This document discusses the results of this evaluation and a recommendation to retain the graded fuel cycle in which one-half of the fuel elements are exchanged at each refueling. This recommendation is based on the better performance of the graded cycle relative to the evaluation criteria of both economics and control margin. A choice to retain the graded cycle and a power density of 5.9 MW/m{sup 3} for the upcoming conceptual design phase was deemed prudent for the following reasons: the graded cycle has significantly better economics, and essentially the same expected availability factor as the batch design, when both are evaluated against the same requirements, including water ingress; and the reduction in maximum fuel pin power peaking in the batch design compared to the graded cycle is only a few percent and gas hot streaks are not improved by changing to a batch cycle. The preliminary 2-D power distribution studies for both designs showed that maximum fuel pin power peaking, particularly near the inner reflector, was high for both designs and nearly the same in magnitude. 10 figs., 9 tabs.
Date: January 1986
Creator: Lane, R. K.; Lefler, W. & Shirley, G.
Partner: UNT Libraries Government Documents Department

Defect fractions for fissile and fertile TRISO-coated fuel

Description: High quality TRISCO-coated UCO and ThO{sub 2} particles with reference MHTGR dimensions were produced in a coating campaign in August and September 1986 for irradiation tests. The heavy metal contamination and the defect levels were below the limits established for the MHTGR fuel. Over 9 kg of uranium in UCO and 30 kg of thorium in ThO{sub 2} were TRISCO-coated in 4 fissile and 3 fertile batches in the 240mm Development Coater. These coated fuel particles will be used to produce fuel rods for testing in the irradiation validation tests to be conducted in capsules HRB-19, -20 and -21 on the DOE Fuel and Fission Product Technology Program. 3 refs., 6 figs., 6 tabs.
Date: September 1, 1986
Creator: Adams, C.C.
Partner: UNT Libraries Government Documents Department

Security monitoring subsystem design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant

Description: Security Monitoring acquires and processes sensor data for use by security personnel in the performance of their function. Security Monitoring is designed and implemented as a part of an overall security plan which is classified as Safeguards Information under 10CFR73.21.
Date: June 1, 1986
Partner: UNT Libraries Government Documents Department

Maintenance building structural design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant

Description: The Maintenance Building is a grade-founded, two-story, steel-framed structure, located adjacent to the Turbine Building in the Energy Conversion Area. It has a reinforced concrete foundation and slab on grade, and insulated sheet metal exterior walls and roof decking.
Date: June 1, 1986
Partner: UNT Libraries Government Documents Department

HVAC [Heating, Ventilation and Air Conditioning] subsystem design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant

Description: The HVAC system is a subsystem within the Mechanical Services Group (MSG). The HVAC system for the 4 x 350 MW(t) Modular HTGR Plant presently consists of ten, nonsafety-related subsystems located in the Nuclear Island (NI) and Energy Conversion Area (ECA) of the plant.
Date: June 1, 1986
Partner: UNT Libraries Government Documents Department

Solid radioactive waste subsystem design description

Description: The Solid Radioactive Waste Subsystem provides reliable processing of collected solid waste to meet the requirements of 10CFR20 and 10CFR61. The methods utilized are cement solidification for sludges, resins, liquids, and noncompactible waste, and compaction for dry compressible waste. The drums of processed waste will be stored until transported off-site for disposal at a licensed burial site.
Date: June 1, 1986
Partner: UNT Libraries Government Documents Department

Graphite technology development plan

Description: This document presents the plan for the graphite technology development required to support the design of the 350 MW(t) Modular HTGR within the US National Gas-Cooled Reactor Program. Besides descriptions of the required technology development, cost estimates, and schedules, the plan also includes the associated design functions and design requirements.
Date: July 1, 1986
Partner: UNT Libraries Government Documents Department

Graphite criteria peer review

Description: This report documents a review of the stress criteria proposed for the graphite components of the modular high temperature gas-cooled reactor (MHTGR) core. The review was conducted by a panel of six independent consultants, chosen for their expertise over a range of relevant disciplines.
Date: September 1, 1986
Partner: UNT Libraries Government Documents Department

Application of bridging methods for standard HTGR [High-Temperature Gas-Cooled Reactor] licensing bases

Description: A review of the bridging methods is accomplished by providing an application of the process to the standard HTGR. A representative PRA, of limited range, is used in the process, and representative deterministic licensing bases are obtained. The PRA is presented as a risk plot, and the characteristics of the events and the equipment in the PRA are used in the bridging application. Representative licensing basis events are identified consisting of anticipated operational occurrences, design basis events, and emergency planning basis events. Representative safety-related functions and safety-related structures, systems and components are identified. The licensing basis events and safety-related functions and equipment are representative of the deterministic licensing bases that will be included in the PSID and SARs. A response is requested from NRC on the acceptability of the application of the method, considering the range of the representative PRA presented.
Date: February 1, 1986
Creator: Houghton, W.J. & Parme, L.L.
Partner: UNT Libraries Government Documents Department

HTGR fuel element structural design considerations

Description: The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabalistic stress analysis techniques coupled with probabalistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistent with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the USA is discussed in the context of stress analysis uncertainty and structural criteria development.
Date: September 1, 1986
Creator: Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R. & Yu, H.
Partner: UNT Libraries Government Documents Department

High-temperature gas-cooled reactor safety studies for the Division of Accident Evaluation. Quarterly progress report, April 1-June 30, 1985

Description: Modeling, code development, and analyses of the modular High-Temperature Gas-Cooled Reactor (HTGR) continued with work on the side-by-side design. Fission-product release and transport experiments were completed. Sections of an HTGR safety handbook were written.
Date: February 1, 1986
Creator: Ball, S.J.; Cleveland, J.C.; Harrington, R.M. & Wilson, J.H.
Partner: UNT Libraries Government Documents Department

Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report

Description: This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc. (C-E).
Date: October 1, 1986
Partner: UNT Libraries Government Documents Department

Summary of core damage frequency from internal initiators: Peach Bottom

Description: Probabilistic risk assessments (PRA) based on internal initiators are being conducted on a number of reference plants in order to provide the Nuclear Regulatory Commission (NRC) with updated information about light water reactor risk. The results of these analyses will be used by the NRC to prepare NUREG-1150 which will examine the NRC's current perception of risk. Peach Bottom has been chosen as one of the reference plants.
Date: January 1, 1986
Creator: Kolaczkowski, A.M.; Lambright, J.A. & Cathey, N.
Partner: UNT Libraries Government Documents Department

Scaling analysis of the coupled heat transfer process in the high-temperature gas-cooled reactor core

Description: The differential equations representing the coupled heat transfer from the solid nuclear core components to the helium in the coolant channels are scaled in terms of representative quantities. This scaling process identifies the relative importance of the various terms of the coupled differential equations. The relative importance of these terms is then used to simplify the numerical solution of the coupled heat transfer for two bounding cases of full-power operation and depressurization from full-system operating pressure for the Fort St. Vrain High-Temperature Gas-Cooled Reactor. This analysis rigorously justifies the simplified system of equations used in the nuclear safety analysis effort at Oak Ridge National Laboratory.
Date: August 1, 1986
Creator: Conklin, J.C.
Partner: UNT Libraries Government Documents Department

Compact nuclear power systems based on particle bed reactors

Description: Compact, low cost nuclear power systems with an extremely low radioactive inventory are described. These systems use the Particle Bed Reactor (PBR), in which HTGR particle fuel is contained in packed beds that are changed daily. The small diameter particle fuel (500 ..mu..m) is directly cooled utilizing the large heat transfer area available (7.8 m/sup 2//liter), thus allowing high bed power densities (MW/liter).
Date: January 1, 1986
Creator: Horn, F.L.; Powell, J.R.; Steinberg, M. & Takahashi, H.
Partner: UNT Libraries Government Documents Department