2 Matching Results

Search Results

Advanced search parameters have been applied.

LMFBR (LIQUID METAL FAST BREEDER REACTOR) READTION RATE AND DOSIMETRY 3RD QUARTERLY PROGRESS REPORT DECEMBER 1971 JANUARY FEBRUARY 1972

Description: This report was compiled at the Hanford Engineering Development Laboratory operated by Westinghouse Hanford Company, a subsidiary of Westinghouse Electric Corporation, for the United States Atomic Energy Commission, Division of Reactor Development and Technology, under Contract No. AT (45-1) 2170. It describes technical progress made in the Interlaboratory LMFBR Reaction Rate Program during the reporting period. The Interlaboratory LMFBR Reaction Rate (ILRR) program has been established by USAEC/RDT to develop a capability to accurately measure neutron-induced reaction rates for LMFBR fuels and materials development programs. The initial goal for the principal fission reactions, {sup 235}U, {sup 238}U, and {sup 239}Pu, is an accuracy to within {+-}5 at the 95% confidence level. Accurate measurement of other fission and non-fission reactions will be required, but to a lesser accuracy, between {+-}5 to 10% at the 95% confidence level. A secondary program objective is improvement in knowledge of the nuclear parameters involved in fuels and materials dosimetry measurements of neutron flux, spectra, fluence, and burnup. These accuracy goals for the ILRR program are severe; measurements of fast-neutron-induced reaction rates have not been rapidly moving toward this level of precision. Using a number of techniques in well established neutron environments of current interest for fast reactor development and critically evaluating the results will help establish existing levels of accuracy and indicate the scale of effort required for improvement. To accomplish the objectives of this program, reliable and documented experimental values of reaction rates and ratios will be determined for various well established and permanent neutron fields. The Coupled Fast Reactivity Measurement Facility (CFRMF) at Aerojet Nuclear Company (ANC) is the first neutron field being studied because of the similarity of its spectrum to that of a fast reactor and the range and reproducibility of flux levels available for track etch, fission chamber, radiochemistry, and ...
Date: March 1, 1972
Creator: WN, MCELROY
Partner: UNT Libraries Government Documents Department