4 Matching Results

Search Results

Advanced search parameters have been applied.

RF cavity R&D at LBNL for the NLC Damping Rings,FY2000/2001

Description: This report contains a summary of the R&D activities at LBNL on RF cavities for the NLC damping rings during fiscal years 2000/2001. This work is a continuation of the NLC RF system R&D of the previous year [1]. These activities include the further optimization and fine tuning of the RF cavity design for both efficiency and damping of higher-order modes (HOMs). The cavity wall surface heating and stresses were reduced at the same time as the HOM damping was improved over previous designs. Final frequency tuning was performed using the high frequency electromagnetic analysis capability in ANSYS. The mechanical design and fabrication methods have been developed with the goals of lower stresses, fewer parts and simpler assembly compared to previous designs. This should result in substantial cost savings. The cavity ancillary components including the RF window, coupling box, HOM loads, and tuners have been studied in more detail. Other cavity options are discussed which might be desirable to either further lower the HOM impedance or increase the stored energy for reduced transient response. Superconducting designs and the use of external ''energy storage'' cavities are discussed. A section is included in which the calculation method is summarized and its accuracy assessed by comparisons with the laboratory measurements of the PEP-II cavity, including errors, and with the beam-sampled spectrum.
Date: June 1, 2001
Creator: Rimmer, R.A.; Atkinson, D.; Corlett, J.N.; Koehler, G.; Li, D.; Hartman, N. et al.
Partner: UNT Libraries Government Documents Department

FY01 Supplemental Science and Performance Analysis: Volume 1,Scientific Bases and Analyses

Description: The U.S. Department of Energy (DOE) is considering the possible recommendation of a site at Yucca Mountain, Nevada, for development as a geologic repository for the disposal of high-level radioactive waste and spent nuclear fuel. To facilitate public review and comment, in May 2001 the DOE released the Yucca Mountain Science and Engineering Report (S&ER) (DOE 2001 [DIRS 153849]), which presents technical information supporting the consideration of the possible site recommendation. The report summarizes the results of more than 20 years of scientific and engineering studies. A decision to recommend the site has not been made: the DOE has provided the S&ER and its supporting documents as an aid to the public in formulating comments on the possible recommendation. When the S&ER (DOE 2001 [DIRS 153849]) was released, the DOE acknowledged that technical and scientific analyses of the site were ongoing. Therefore, the DOE noted in the Federal Register Notice accompanying the report (66 FR 23013 [DIRS 155009], p. 2) that additional technical information would be released before the dates, locations, and times for public hearings on the possible recommendation were announced. This information includes: (1) the results of additional technical studies of a potential repository at Yucca Mountain, contained in this FY01 Supplemental Science and Performance Analyses: Vol. 1, Scientific Bases and Analyses; and FY01 Supplemental Science and Performance Analyses: Vol. 2, Performance Analyses (McNeish 2001 [DIRS 155023]) (collectively referred to as the SSPA) and (2) a preliminary evaluation of the Yucca Mountain site's preclosure and postclosure performance against the DOE's proposed site suitability guidelines (10 CFR Part 963 [64 FR 67054 [DIRS 124754]]). By making the large amount of information developed on Yucca Mountain available in stages, the DOE intends to provide the public and interested parties with time to review the available materials and to formulate and ...
Date: May 30, 2001
Creator: Bodvarsson, G. S. & Dobson, David
Partner: UNT Libraries Government Documents Department

Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

Description: The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.
Date: August 1, 1999
Creator: Chartock, Mike (ed.) & Hansen, Todd (ed.)
Partner: UNT Libraries Government Documents Department

Mapping DNAPL transport contamination in sedimentary and fractured rock aquifers with high resolution borehole seismic imaging Project No. SF11SS13 FY01 Annual Report

Description: This report covers the work performed in the first year of a three-year project funded by the USDOE's Subsurface Contaminant Focus Area (SCFA). The objectives of this project are to develop, demonstrate and evaluate, at appropriate field sites, the utility of high frequency seismic imaging methods to detect and characterize non-aqueous phase liquid (NAPL) contamination in sedimentary and fractured rock aquifers. Field tests consist of crosswell seismic tomography acquired before, during and after any remediation action that would potentially affect fluid distributions. Where feasible, other characterization data is obtained, such as crosswell radar, borehole conductivity and cone penetration testing (CPT). Crosswell data are processed to obtain tomographic images, or two-dimensional distributions, of velocity and attenuation. The interpretation of the tomograms utilizes all available site characterization data to relate the geophysical attributes to lithology and fluid phase heterogeneities. Interpretations are validated by evaluation and testing of field cores. Laboratory tests on core retrieved from surveyed locations are performed to determine the relationships between geophysical parameters and solid and fluid phase composition. In the case of sedimentary aquifers, proof of principle has been demonstrated previously in homogeneous sand-packs at the centimeter and half-meter scale (Geller and Myer, 1995; Geller et al., 2000). The field tests will provide proof-of-principle at the field-scale, by working in an unconsolidated sand aquifer with known presence of NAPL. The ability to upscale from the laboratory to the field is evaluated by conducting field measurements over a range of frequencies that overlap the lowest frequencies used in the laboratory tests. In the fractured rock case, previous field work has shown that fracture zones can be detected by crosswell seismic tomography (Daley et al., 2001; Daley et al., 2000). Laboratory studies have demonstrated that the seismic wave signature is sensitive to the fracture stiffness, and that stiffness is affected ...
Date: December 1, 2001
Creator: Geller, J. T.; Majer, E. L.; Peterson, J. E.; Williams, K. H. & Flexser, S.
Partner: UNT Libraries Government Documents Department