Search Results

open access

0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1-eV)/GaInAs(0.7-eV) Four-Junction Solar Cell: Preprint

Description: We discuss recent developments in III-V multijunction solar cells, focusing on adding a fourth junction to the Ga0.5In0.5P/GaAs/Ga0.75In0.25As inverted three-junction cell. This cell, grown inverted on GaAs so that the lattice-mismatched Ga0.75In0.25As third junction is the last one grown, has demonstrated 38% efficiency, and 40% is likely in the near future. To achieve still further gains, a lower-bandgap GaxIn1-xAs fourth junction could be added to the three-junction structure for a four-junction cell whose efficiency could exceed 45% under concentration. Here, we present the initial development of the GaxIn1-xAs fourth junction. Junctions of various bandgaps ranging from 0.88 to 0.73 eV were grown, in order to study the effect of the different amounts of lattice mismatch. At a bandgap of 0.88 eV, junctions were obtained with very encouraging {approx}80% quantum efficiency, 57% fill factor, and 0.36 eV open-circuit voltage. The device performance degrades with decreasing bandgap (i.e., increasing lattice mismatch). We model the four-junction device efficiency vs. fourth junction bandgap to show that an 0.7-eV fourth-junction bandgap, while optimal if it could be achieved in practice, is not necessary; an 0.9-eV bandgap would still permit significant gains in multijunction cell efficiency while being easier to achieve than the lower-bandgap junction.
Date: May 1, 2006
Creator: Friedman, D. J.; Geisz, J. F.; Norman, A. G.; Wanlass, M. W. & Kurtz, S. R.
Partner: UNT Libraries Government Documents Department
open access

1-MeV-Electron Irradiation of GaInAsN Cells: Preprint

Description: This conference paper describes the GaInAsN cells that are measured to retain 933% and 894% of their original efficiency after exposure to 5 X 1014 and 1 X 1015 cm-2 1-MeV electrons, respectively. The rate of degradation is not correlated with the performance at beginning of life (BOL). The depletion width remains essentially unchanged, increasing by< 1%. Temperature-coefficient data for GaInAsN cells are also presented. These numbers are used to project the efficiency of GaInAsN-containing multijunction cells. The GaInAsN junction is not currently predicted to increase the efficiencies of the multijunction cells. Nevertheless, GaInAsN-containing multijunction cell efficiencies are predicted to be comparable to those of the conventional structures, and even small improvements in the GaInAsN cell may lead to higher multijunction cell efficiencies, especially for high-radiation applications and when cell operating temperature is low.
Date: May 1, 2002
Creator: Kurtz, Sarah; King, R. R.; Edmondson, K. M.; Friedman, D. J. & Karam, N. H.
Partner: UNT Libraries Government Documents Department
open access

1 mil gold bond wire study.

Description: In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.
Date: May 1, 2013
Creator: Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W. & Rutherford, Brian Milne
Partner: UNT Libraries Government Documents Department
open access

A 2--4 nm Linac Coherent Light Source (LCLS) using the SLAC linac

Description: We describe the use of the SLAC linac to drive a unique, powerful. short wavelength Linac Coherent Light Source (LCLS). Operating as an FEL, lasing would be achieved in a single pass of a high peak current electron beam through a long undulator by self-amplified spontaneous emission (SASE). The main components are a high-brightness rf photocathode electron gun; pulse compressors; about 1/5 of the SLAC linac; and a long undulator with a FODO quadrupole focussing system. Using electrons below 8 GeV, the system would operate at wavelengths down to about 3 nm, producing {ge}10 GW peak power in sub-ps pulses. At a 120 Hz rate the average power is {approx} 1 W.
Date: May 1, 1993
Creator: Winick, H.; Bane, K. & Boyce, R.
Partner: UNT Libraries Government Documents Department
open access

2 {times} 2 TeV {mu}{sup +}{mu}{sup {minus}} collider: Lattice and accelerator-detector interface study

Description: The design for a high-luminosity {mu}{sup +}{mu}{sup {minus}} superconducting storage ring is presented based on first-pass calculations. Special attention is paid to two Iowa interaction regions (IR) whose optics are literally interlaced with the collider detectors. Various sources of backgrounds in IR are explored via realistic Monte Carlo simulations. An improved design of the collider lattice in the neighborhood of the interaction points (EP) is determined by the need to reduce significantly background levels in the detectors.
Date: May 1, 1995
Creator: Gelfand, N. M. & Mokhov, N. V.
Partner: UNT Libraries Government Documents Department
open access

3-D Ray-tracing and 2-D Fokker-Planck Simulations of Radiofrequency Application to Tokamak Plasmas

Description: A state of the art numerical tool has been developed to simulate the propagation and the absorption of coexisting different types of waves in a tokamak geometry. The code includes a numerical solution of the three-dimensional (R, Z, {Phi}) toroidal wave equation for the electric field of the different waves in the WKBJ approximation. At each step of integration, the two-dimensional (v{sub {parallel}}, v{sub {perpendicular}}) Fokker-Planck equation is solved in the presence of quasilinear diffusion coefficients. The electron Landau damping of the waves is modeled taking into account the interaction of the wave electric fields with the quasilinearly modified distribution function. Consistently, the code calculates the radial profiles of non-inductively generated current densities, the transmitted power traces and the total power damping curves. Synergistic effects among the different type of waves (e.g., lower hybrid and ion Bernstein waves) are studied through the separation of the contributions of the single wave from the effects due to their coexistence.
Date: May 1, 1999
Creator: Cardinali, A.; Paoletti, F. & Bernabei, S.
Partner: UNT Libraries Government Documents Department
open access

3-D treatment of convective flow in the earth's mantle

Description: A three-dimensional finite-element method is used to investigate thermal convection in the earth's mantle. The equations of motion are solved implicitly by means of a fast multigrid technique. The computational mesh for the spherical problem is derived from the regular icosahedron. The calculation described use a mesh with 43,554 nodes and 81,920 elements and were run on a Cray X. The earth's mantle is modeled as a thick spherical shell with isothermal, free-slip boundaries. The infinite Prandtl number problem is formulated in terms of pressure, density, absolute temperature, and velocity and assumes an isotropic Newtonian rheology. Solutions are obtained for Rayleigh numbers up to approximately 10/sup 6/ for a variety of modes of heating. Cases initialized with a temperature distribution with warmer temperatures beneath speading ridges and cooler temperatures beneath present subduction zones yield whole-mantle convection solutions with surface velocities that correlate well with currently observed plate velocities. 8 references, 6 figures.
Date: May 1, 1984
Creator: Baumgardner, J.R.
Partner: UNT Libraries Government Documents Department
open access

A 3 TeV Muon Collider Lattice Design

Description: A new lattice for 3 TeV c.o.m. energy with {beta}* = 5mm was developed which follows the basic concept of the earlier 1.5 TeV design but uses quad triplets for the final focus in order to keep the maximum magnet strength and aperture close to those in 1.5 TeV case. Another difference is employment of combined-function magnets with the goal to lower heat deposition in magnet cold mass and to eliminate bending field free regions which produce 'hot spots' of neutrino radiation that can be an issue at higher energy. The proposed lattice is shown to satisfy the requirements on luminosity, dynamic aperture and momentum acceptance.
Date: May 1, 2012
Creator: Alexahin, Y. & Gianfelice-Wendt, E.
Partner: UNT Libraries Government Documents Department
open access

4. pi. data of relativistic nuclear collisions. [Plastic ball]

Description: During the past two years, complete events of relativistic nuclear collisions are being studied with the Plastic Ball, the first electronic nonmagnetic particle-identifying 4..pi.. spectrometer. It is well suited to handle the large multiplicities in these reactions and allows collection of data at a rate sufficient to make further software selections to look at rare events. The analysis of the data follows various lines covering topics like thermalization, stopping or transparency, cluster-production mechanism (--can it tell entropy), search for collective flow through various global analyzing methods that allow determination of the scattering plane, projectile fragmentation (--is there a bounce-off), pion distribution, two-particle correlations: Hanbury-Brown Twiss, and excited nuclear states (--nucleosynthesis at the freezeout point or from chemical equilibrium). We will cover in this contribution only two subjects: stopping and thermalization and cluster production.
Date: May 1, 1983
Creator: Gutbrod, H.H.; Gustafsson, H.A. & Kolb, B.
Partner: UNT Libraries Government Documents Department
open access

5 K neutron irradiation and thermal cycling of NbTi superconductors

Description: Simulation experiments of magnet operating conditions in a fusion reactor are reported. After approximately half of the lifetime dose the results on a variety of NbTi superconductors show moderate changes of the critical current density j/sub c/ (approx. 10%), the percentage change of j/sub c/ is always larger at high fields (8 T) than at 5 T. After a rapid initial change the resistivity ratios of the Cu-stabilizer are found to decrease only slowly with increasing neutron fluence.
Date: May 1, 1984
Creator: Hahn, P.; Hoch, H.; Weber, H. W.; Birtcher, R. C. & Brown, B. S.
Partner: UNT Libraries Government Documents Department
open access

6. 4 Tesla dipole magnet for the SSC

Description: A design is presented for a dipole magnet suitable for the proposed SSC facility. Test results are given for model magnets of this design 1 m long and 4.5 m long. Flattened wedge-shaped cables (''keystoned'') are used in a graded, two-layer ''cos theta'' configuration with three wedges to provide sufficient field uniformity and mechanical rigidity. Stainless steel collars 15 mm wide, fastened with rectangular keys, provide structural support, and there is a ''cold'' iron flux return. The outer-layer cable has 30 strands of 0.0255 in. dia NbTi multifilamentary wire with Cu/S.C. = 1.8, and the inner has 23 strands of .0318 in. dia wire with Cu/S.C. = 1.3. Performance data is given including training behavior, winding stresses, collar deformation, and field uniformity.
Date: May 1, 1985
Creator: Taylor, C.E.; Caspi, S.; Gilbert, W.; Meuser, R.; Mirk, K.; Peters, C. et al.
Partner: UNT Libraries Government Documents Department
open access

6 Batch Injection and Slipped Beam Tune Measurements in Fermilab?s Main Injector

Description: During NOVA operations it is planned to run the Fermilab Recycler in a 12 batch slip stacking mode. In preparation for this, measurements of the tune during a six batch injection and then as the beam is decelerated by changing the RF frequency have been carried out in the Main Injector. The coherent tune shifts due to the changing beam intensity were measured and compared well with the theoretically expected tune shift. The tune shifts due to changing RF frequency, required for slip stacking, also compare well with the linear theory, although some nonlinear affects are apparent at large frequency changes. These results give us confidence that the expected tunes shifts during 12 batch slip stacking Recycler operations can be accommodated.
Date: May 1, 2012
Creator: Scott, D. J.; Capista, D.; Kourbanis, I.; Seiya, K. & Yan, M.-J.
Partner: UNT Libraries Government Documents Department
open access

7-GeV advanced photon source beamline initiative: Conceptual design report

Description: The DOE is building a new generation 6-7 GeV Synchrotron Radiation Source known as the Advanced Photon Source (APS) at Argonne National Laboratory. This facility, to be completed in FY 1996, can provide 70 x-ray sources of unprecedented brightness to meet the research needs of virtually all scientific disciplines and numerous technologies. The technological research capability of the APS in the areas of energy, communications and health will enable a new partnership between the DOE and US industry. Current funding for the APS will complete the current phase of construction so that scientists can begin their applications in FY 1996. Comprehensive utilization of the unique properties of APS beams will enable cutting-edge research not currently possible. It is now appropriate to plan to construct additional radiation sources and beamline standard components to meet the excess demands of the APS users. In this APS Beamline Initiative, 2.5-m-long insertion-device x-ray sources will be built on four straight sections of the APS storage ring, and an additional four bending-magnet sources will also be put in use. The front ends for these eight x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build standard beamline components to meet scientific and technological research demands of the Collaborative Access Teams. The Conceptual Design Report (CDR) for the APS Beamline Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. The document also describes the preconstruction R&D plans for the Beamline Initiative activities and provides the cost estimates for the required R&D.
Date: May 1, 1993
Partner: UNT Libraries Government Documents Department
open access

8 GeV H- ions: Transport and injection

Description: Fermilab is working on the design of an 8 GeV superconducting RF H{sup -} linac called the Proton Driver. The energy of H{sup -} beam will be an order of magnitude higher than the existing ones. This brings up a number of technical challenges to transport and injection of H{sup -} ions. This paper will focus on the subjects of stripping losses (including stripping by blackbody radiation, field and residual gas) and carbon foil stripping efficiency, along with a brief discussion on other issues such as Stark states lifetime of hydrogen atoms, single and multiple Coulomb scattering, foil heating and stress, radiation activation, collimation and jitter correction, etc.
Date: May 1, 2005
Creator: Chou, W.; Bryant, H.; Drozhdin, A.; Hill, C.; Kostin, M.; Macek, R. et al.
Partner: UNT Libraries Government Documents Department
open access

A 10,000 A 1000 VDC solid state dump switch

Description: The superconducting magnet test program at Fermilab requires a switch, called a dump switch, rated 10,000 A, 1000 Vdc, which must be able to continuously carry rated current. A dump resistor rated 2 MJoules, is connected in parallel with the switch contacts and dissipates the stored energy from a magnet when the switch opens. The required switch opening time is 250 {mu}sec maximum after detection of a fault or a trip command. A successful switch can be constructed from six parallel inverter type Silicon Controlled Rectifiers (SCR's) which each carry their share of the load current. These run SCR's are mounted at watercooled heatsinks and are commutated off from stored energy in capacitors. Each parallel SCR is connected in series with a 1 m{Omega} watercooled resistor to assure dc current sharing and turn on. A description of the control and construction of the switch is presented. 6 figs.
Date: May 1, 1991
Creator: Visser, A.
Partner: UNT Libraries Government Documents Department
open access

10 CFR 830 Major Modification Determination for Advanced Test Reactor LEU Fuel Conversion

Description: The Advanced Test Reactor (ATR), located in the ATR Complex of the Idaho National Laboratory (INL), was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. The ATR is fueled with high-enriched uranium (HEU) matrix (UAlx) in an aluminum sandwich plate cladding. The National Nuclear Security Administration Global Threat Reduction Initiative (GTRI) strategic mission includes efforts to reduce and protect vulnerable nuclear and radiological material at civilian sites around the world. Converting research reactors from using HEU to low-enriched uranium (LEU) was originally started in 1978 as the Reduced Enrichment for Research and Test Reactors (RERTR) Program under the U.S. Department of Energy (DOE) Office of Science. Within this strategic mission, GTRI has three goals that provide a comprehensive approach to achieving this mission: The first goal, the driver for the modification that is the subject of this determination, is to convert research reactors from using HEU to LEU. Thus the mission of the ATR LEU Fuel Conversion Project is to convert the ATR and Advanced Test Reactor Critical facility (ATRC) (two of the six U.S. High-Performance Research Reactors [HPRR]) to LEU fuel by 2017. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.
Date: May 1, 2012
Creator: Christensen, Boyd D.; Lehto, Michael A. & Duckwitz, Noel R.
Partner: UNT Libraries Government Documents Department
open access

10 CFR 830 Major Modification Determination for Advanced Test Reactor RDAS and LPCIS Replacement

Description: The replacement of the ATR Control Complex's obsolete computer based Reactor Data Acquisition System (RDAS) and its safety-related Lobe Power Calculation and Indication System (LPCIS) software application is vitally important to ensure the ATR remains available to support this national mission. The RDAS supports safe operation of the reactor by providing 'real-time' plant status information (indications and alarms) for use by the reactor operators via the Console Display System (CDS). The RDAS is a computer support system that acquires analog and digital information from various reactor and reactor support systems. The RDAS information is used to display quadrant and lobe powers via a display interface more user friendly than that provided by the recorders and the Control Room upright panels. RDAS provides input to the Nuclear Engineering ATR Surveillance Data System (ASUDAS) for fuel burn-up analysis and the production of cycle data for experiment sponsors and the generation of the Core Safety Assurance Package (CSAP). RDAS also archives and provides for retrieval of historical plant data which may be used for event reconstruction, data analysis, training and safety analysis. The RDAS, LPCIS and ASUDAS need to be replaced with state-of-the-art technology in order to eliminate problems of aged computer systems, and difficulty in obtaining software upgrades, spare parts, and technical support. The major modification criteria evaluation of the project design did not lead to the conclusion that the project is a major modification. The negative major modification determination is driven by the fact that the project requires a one-for-one equivalent replacement of existing systems that protects and maintains functional and operational requirements as credited in the safety basis.
Date: May 1, 2012
Creator: Korns, David E.
Partner: UNT Libraries Government Documents Department
open access

10 CFR 830 Major Modification Determination for Emergency Firewater Injection System Replacement

Description: The continued safe and reliable operation of the ATR is critical to the Department of Energy (DOE) Office of Nuclear Energy (NE) mission. While ATR is safely fulfilling current mission requirements, a variety of aging and obsolescence issues challenge ATR engineering and maintenance personnel’s capability to sustain ATR over the long term. First documented in a series of independent assessments, beginning with an OA Environmental Safety and Health Assessment conducted in 2003, the issues were validated in a detailed Material Condition Assessment (MCA) conducted as a part of the ATR Life Extension Program in 2007.Accordingly, near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent sub-projects. The first project will replace the existent diesel-electrical bus (E-3), switchgear, and the fifty year old antiquated marine diesels with commercial power that is backed with safety-related emergency diesel generators (EDGs), switchgear, and uninterruptible power supply. The second project will replace the four, obsolete, original primary coolant pumps and motors. The third project, the subject of this major modification determination, will replace the current emergency firewater injection system (EFIS). The replacement water injection system will function as the primary emergency water injection system with the EFIS being retained as a defense-in-depth backup. Completion of this and the two other age-related projects (replacement of the ATR diesel bus (E-3) and switchgear and replacement of the existent aged primary coolant pumps and motors) will resolve major age-related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion …
Date: May 1, 2011
Creator: Duckwitz, Noel
Partner: UNT Libraries Government Documents Department
open access

10 CFR 830 Major Modification Determination for Replacement of ATR Primary Coolant Pumps and Motors

Description: The continued safe and reliable operation of the ATR is critical to the Department of Energy (DOE) Office of Nuclear Energy (NE) mission. While ATR is safely fulfilling current mission requirements, a variety of aging and obsolescence issues challenge ATR engineering and maintenance personnel’s capability to sustain ATR over the long term. First documented in a series of independent assessments, beginning with an OA Environmental Safety and Health Assessment conducted in 2003, the issues were validated in a detailed Material Condition Assessment (MCA) conducted as a part of the ATR Life Extension Program in 2007.Accordingly, near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent subprojects. The first project will replace the existent diesel-electrical bus (E-3), switchgear, and the 50-year-old obsolescent marine diesels with commercial power that is backed with safety related emergency diesel generators, switchgear, and uninterruptible power supply (UPS). The second project, the subject of this major modification determination, will replace the four, obsolete, original primary coolant pumps (PCPs) and motors. Completion of this and the two other age-related projects (replacement of the ATR diesel bus [E-3] and switchgear and replacement of the existent emergency firewater injection system) will resolve major age-related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification: 1. Evaluation Criteria #3 (Change of existing process). The proposed strategy for equipping the replacement PCPs with VFDs and having the PCPs also function as ECPs will require significant safety …
Date: May 1, 2011
Creator: Duckwitz, Noel
Partner: UNT Libraries Government Documents Department
open access

10 CFR 830 Major Modification Determination for the ATR Diesel Bus (E-3) and Switchgear Replacement

Description: Near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent subprojects. The first project, subject of this determination, will replace the existent diesel-electrical bus (E-3) and associated switchgear. More specifically, INL proposes transitioning ATR to 100% commercial power with appropriate emergency backup to include: • Provide commercial power as the normal source of power to the ATR loads currently supplied by diesel-electric power. • Provide backup power to the critical ATR loads in the event of a loss of commercial power. • Replace obsolescent critical ATR power distribution equipment, e.g., switchgear, transformers, motor control centers, distribution panels. Completion of this and two other age-related projects (primary coolant pump and motor replacement and emergency firewater injection system replacement) will resolve major age related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues make the project a major modification: 1. Evaluation Criteria #2 (Footprint change). The addition of a new PC-4 structure to the ATR Facility to house safety-related SSCs requires careful attention to maintaining adherence to applicable engineering and nuclear safety design criteria (e.g., structural qualification, fire suppression) to ensure no adverse impacts to the safety-related functions of the housed equipment. 2. Evaluation Criteria #3 (Change of existing process). The change to the strategy for providing continuous reliable power to the safety-related emergency coolant pumps requires careful attention and analysis to ensure it meets a project primary object to maintain or reduce CDF and does not negatively affect the efficacy of the currently approved strategy. 3. …
Date: May 1, 2011
Creator: Duckwtiz, Noel
Partner: UNT Libraries Government Documents Department
open access

13 point video tape quality guidelines

Description: Until high definition television (ATV) arrives, in the U.S. we must still contend with the National Television Systems Committee (NTSC) video standard (or PAL or SECAM-depending on your country). NTSC, a 40-year old standard designed for transmission of color video camera images over a small bandwidth, is not well suited for the sharp, full-color images that todays computers are capable of producing. PAL and SECAM also suffers from many of NTSC`s problems, but to varying degrees. Video professionals, when working with computer graphic (CG) images, use two monitors: a computer monitor for producing CGs and an NTSC monitor to view how a CG will look on video. More often than not, the NTSC image will differ significantly from the CG image, and outputting it to NTSC as an artist works enables the him or her to see the images as others will see it. Below are thirteen guidelines designed to increase the quality of computer graphics recorded onto video tape. Viewing your work in NTSC and attempting to follow the below tips will enable you to create higher quality videos. No video is perfect, so don`t expect to abide by every guideline every time.
Date: May 1, 1997
Creator: Gaunt, R.
Partner: UNT Libraries Government Documents Department
open access

20% Wind Energy - Diversifying Our Energy Portfolio and Addressing Climate Change (Brochure)

Description: This brochure describes the R&D efforts needed for wind energy to meet 20% of the U.S. electrical demand by 2030. In May 2008, DOE published its report, 20% Wind Energy by 2030, which presents an in-depth analysis of the potential for wind energy in the United States and outlines a potential scenario to boost wind electric generation from its current production of 16.8 gigawatts (GW) to 304 GW by 2030. According to the report, achieving 20% wind energy by 2030 could help address climate change by reducing electric sector carbon dioxide (CO2) emissions by 825 million metric tons (20% of the electric utility sector CO2 emissions if no new wind is installed by 2030), and it will enhance our nation's energy security by diversifying our electricity portfolio as wind energy is an indigenous energy source with stable prices not subject to fuel volatility. According to the report, increasing our nation's wind generation could also boost local rural economies and contribute to significant growth in manufacturing and the industry supply chain. Rural economies will benefit from a substantial increase in land use payments, tax benefits and the number of well-paying jobs created by the wind energy manufacturing, construction, and maintenance industries. Although the initial capital costs of implementing the 20% wind scenario would be higher than other generation sources, according to the report, wind energy offers lower ongoing energy costs than conventional generation power plants for operations, maintenance, and fuel. The 20% scenario could require an incremental investment of as little as $43 billion (net present value) more than a base-case no new wind scenario. This would represent less than 0.06 cent (6 one-hundredths of 1 cent) per kilowatt-hour of total generation by 2030, or roughly 50 cents per month per household. The report concludes that while achieving the 20% wind …
Date: May 1, 2008
Partner: UNT Libraries Government Documents Department
open access

26 - LMFBR flexible pipe joint development

Description: Objective is the qualification of a PLBR-size primary loop flexible piping joint to the ASME Band PVC rules. Progress and activities are reported for: Class 1 flexible joint code approval support, engineering and design, material development, component testing, and manufacturing development. (DLC)
Date: May 1, 1978
Creator: Anderson, R.V.
Partner: UNT Libraries Government Documents Department
Back to Top of Screen