Search Results

open access

2-Page Summary for Neptunium solubility in the Near-field Environment of A Proposed Yucca Mountain Repository

Description: The total system performance assessment (TSPA) for the proposed repository at Yucca Mountain, NV, includes a wide variety of processes to evaluate the potential release of radionuclides from the Engineered Barrier System into the unsaturated zone of the geosphere. The principal processes controlling radionuclide release and mobilization from the waste forms are captured in the model to assess the dissolved concentrations of radionuclides in the source-term. The TSPA model of the source-term incorporates the far-from-equilibrium dissolution of, for example, spent nuclear fuel (SNF) to capture bounding rates of radionuclide availability as the SNF degrades. In addition, for individual radionuclides, the source-term model evaluates solubility constraints that are more indicative of longer-term, equilibrium processes that can limit the potential mass transport from the source term in those cases. These solubility limits represent phase saturation and precipitation processes that can occur either at the waste form as it alters, or at other locations in the near-field environment (e.g., within the invert) if chemical conditions are different. Identification and selection of applicable constraints for solubility-limited radionuclide concentrations is a primary focus in formulating the source-term model for the TSPA. Neptunium is a long-lived radionuclide that becomes a larger fraction of the potential dose as radioactive decay of other radionuclides proceeds. To delineate appropriate long-term source-term controls on dissolved neptunium concentrations, a number of alternative models have been defined. The models are based on data both collected within the Yucca Mountain Project and taken from published literature, and have been evaluated against independent data sets to assess their applicability. The alternative models encompass ones based on precipitation of neptunium within its own separate oxide phases (i.e., ''pure'' Np-phases), and those where neptunium is incorporated into the secondary (tertiary, quaternary, etc.) uranyl phases forming as alteration products of SNF (secondary phases). The constraints on dissolved …
Date: March 29, 2005
Creator: Sassani, D.; van Luik, A. & Summerson, J.
Partner: UNT Libraries Government Documents Department
open access

3-D Characterization of the Structure of Paper and Paperboard and Their Application to Optimize Drying and Water Removal Processes and End-Use Applications

Description: The three dimensional structure of paper materials plays a critical role in the paper manufacturing process especially via its impact on the transport properties for fluids. Dewatering of the wet web, pressing and drying will benefit from knowledge of the relationships between the web structure and its transport coefficients. The structure of the pore space within a paper sheet is imaged in serial sections using x-ray micro computed tomography. The three dimensional structure is reconstructed from these sections using digital image processing techniques. The structure is then analyzed by measuring traditional descriptors for the pore space such as specific surface area and porosity. A sequence of microtomographs was imaged at approximately 2 m intervals and the three-dimensional pore-fiber structure was reconstructed. The pore size distributions for both in-plane as well as transverse pores were measured. Significant differences in the in-plane (XY) and the transverse directions in pore characteristics are found and may help partly explain the different liquid and vapor transport properties in the in-plane and transverse directions. Results with varying sheet structures compare favorably with conventional mercury intrusion porosimetry data. Interestingly, the transverse pore structure appears to be more open with larger pore size distribution compared to the in plane pore structure. This may help explain the differences in liquid and vapor transport through the in plane and transverse structures during the paper manufacturing process and during end-use application. Comparison of Z-directional structural details of hand sheet and commercially made fine paper samples show a distinct difference in pore size distribution both in the in-plane and transverse direction. Method presented here may provide a useful tool to the papermaker to truly engineer the structure of paper and board tailored to specific end-use applications. The difference in surface structure between the top and bottom sides of the porous material, i.e. …
Date: August 29, 2004
Creator: Shri Ramaswamy, University of Minnesota & B.V. Ramarao, State University of New York
Partner: UNT Libraries Government Documents Department
open access

3-D vertical seismic profiling at LLNL Site 300

Description: The initial goal of the 3-D Vertical Seismic Profiling (VSP) work at LLNL was to characterize seismic wave velocities and frequencies below the vadose zone to design the acquisition geometry for a 3-D shallow surface seismic reflection survey. VSPs are also used routinely to provide a link between surface seismic data and well logs. However, a test 2-D seismic line recorded at LLNL in the Spring of 1994 indicated that obtaining high quality reflection images below the vadose zone, yet shallower that 50 m, would require an expensive, very finely sampled survey ({lt} 1 m receiver spacing). Extensive image processing of the LLNL 2-D test line indicated that the only reliable reflection was from the top of the water table. Surprisingly, these results were very different than recent 3-D seismic work recorded at other sites, where high quality, high frequency surface (up to 300 Hz) reflection images were obtained as shallow as 20m. We believe that the differences are primarily due to the comparatively deep vadose zone at LLNL (15 to 30m) as compared to 0-5m at other sites. The thick vadose zone attenuates the reflection signals, particularly at the high frequencies (above 100 @). In addition, the vadose zone at LLNL creates a seismogram in which surface-propagating noise overlaps with the reflection signals for reflections above 50 m. By contrast, when the vadose zone is not thick, high frequencies can propagate and noise will not overlap with reflections as severely. Based on the results from the 2-D seismic line and the encouraging results from a VSP run concurrent with the 2-D seismic experiment, we modified the objectives of the research and expanded the scope of the VSP imaging at LLNL. We conducted two 3-D multi-offset VSP experiments at LLNL in the Summer and Fall of 1994. These VSP experiments …
Date: January 29, 1997
Creator: Bainer, R.; Rector, J. & Milligan, P.
Partner: UNT Libraries Government Documents Department
open access

10 MW Supercritical CO2 Turbine Test

Description: The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late in Phase 1 an opportunity arose to collaborate …
Date: January 29, 2014
Creator: Turchi, Craig
Partner: UNT Libraries Government Documents Department
open access

20-MW Magnicon for ILC

Description: The 1.3 GHz RF power to drive ILC is now planned to be supplied by 600-1200, 10-MW peak power multi-beam klystrons. In this project, a conceptual design for 1.3 GHz magnicons with 20 MW peak power was developed as an alternative to the klystrons, with the possibility of cutting in half the numbers of high-power tubes and associated components. Design of a conventional magnicon is described, using TM110 modes in all cavities, as well as design of a modified magnicon with a TE111 mode output cavity. The latter has the advantage of much lower surface fields than the TM110 mode, with no loss of output power or electronic efficiency.
Date: November 29, 2006
Creator: Hirshfield, Jay L.
Partner: UNT Libraries Government Documents Department
open access

21-PWR Waste Package Side and End Impacts

Description: The objective of this calculation is to determine the structural response of a 21-Pressurized Water Reactor (PWR) spent nuclear fuel waste package impacting an unyielding surface. A range of initial velocities and initial angles between the waste package and the unyielding surface is studied. The scope of this calculation is limited to estimating the area of the outer shell (OS) where the residual stress exceeds a given limit (hereafter ''damaged area''). The stress limit is defined as a fraction of the yield strength of the OS material, Alloy 22 (SB-575 N06022), at the appropriate temperature. The design of the 21-PWR waste package used in this calculation is that defined in Reference 8. However, a value of 4 mm was used for the gap between the inner shell and the OS, and the thickness of the OS was reduced by 2 mm. The sketch in Attachment I provides additional information not included in Reference 8. All obtained results are valid for this design only. This calculation is associated with the waste package design and was performed by the Specialty Analyses and Waste Package Design Section. The waste package (i.e. uncanistered spent nuclear fuel disposal container) is classified as Quality Level 1.
Date: August 29, 2005
Creator: Schmitt, T.
Partner: UNT Libraries Government Documents Department
open access

100 Areas technical activities report -- Engineering, February, 1950

Description: This report covers work done by the Physical Chemistry Group and the Pile Engineering Groups. Subjects covered are as follows: metal exposure details; slug corrosion details; pile control -- thimble removal study; Van Stone flange corrosion details; process tube corrosion details; carbon dioxide experiment; graphite sampling; special pile measurements; routine pile measurements; 105 technical laboratories; P-10; boiling studies; pile annealing studies; gas tube experiment; thermal conductivity and electrical resistivity; x-ray diffraction studies; and stored energy.
Date: March 29, 1950
Partner: UNT Libraries Government Documents Department
open access

100 Areas technical activities report -- Engineering, July, 1947

Description: This monthly report covers activities for the production reactors. The 100 Area activities include: corrosion and blistering studies of slugs and flanges; study of the process tube leak at 105-D; graphite expansion studies which include galling of process tubes and stresses in biological shields; and irradiation studies.
Date: August 29, 1947
Creator: Woods, W. K.
Partner: UNT Libraries Government Documents Department
open access

100-F unit purge May 20, 1945

Description: No Description Available.
Date: May 29, 1945
Creator: Dahlen, P. A.
Partner: UNT Libraries Government Documents Department
open access

100-KEW coolant backup adequacy

Description: No Description Available.
Date: April 29, 1964
Creator: Heacock, H. W.
Partner: UNT Libraries Government Documents Department
open access

AZ-101 Mixer Pump Demonstration Data Acquisition System and Gamma Cart Data Acquisition Control System Software Configuration Management Plan

Description: This Software Configuration Management Plan (SCMP) provides the instructions for change control of the AZ1101 Mixer Pump Demonstration Data Acquisition System (DAS) and the Sludge Mobilization Cart (Gamma Cart) Data Acquisition and Control System (DACS).
Date: December 29, 1999
Creator: White, D. A.
Partner: UNT Libraries Government Documents Department
open access

I-129 in SRP high-level waste and saltstone

Description: Long-lived isotopes in nuclear waste can have the greatest impact on man and the environment because of the integrated dose over a long time period. Many long-lived radioactive isotopes are present in the waste at Savannah River Plant. Actinide elements make up a significant portion of these isotopes. But when the waste is incorporated into a glass waste form, the actinides are converted to chemically stable oxide species that are released at extremely low and controlled rates, even after the waste form has degraded. Because of their different chemistry, radioactive isotopes of carbon, technetium, and iodine could be released at a significantly higher rate. To establish the potential hazard from these isotopes, their concentration in waste forms for final disposal must be known. The concentrations of C-14 and T{sub c}-99 in SRP waste were previously estimated. Additional analytical data has now been obtained for I-129 in H-Area soluble waste to estimate its concentration in SRP waste. Because of the nature of processes at SRP, most of the I-129 in the waste is in the H-Area waste tanks.
Date: February 29, 1984
Creator: Fowler, J. R. & Cook, J. R.
Partner: UNT Libraries Government Documents Department
open access

200 Area weekly report

Description: No Description Available.
Date: December 29, 1955
Partner: UNT Libraries Government Documents Department
open access

207-A retention basins system design description

Description: The 242-A Evaporator is a waste treatment facility designed to reduce liquid waste volumes currently stored in the Hanford Area double shell Waste Storage Tanks. The evaporator uses evaporative concentration to achieve this volume reduction, returning the concentrated slurry to the double-shell tanks for storage. The process effluent is transferred to various retention/treatment facilities for eventual release to the environment. The process utilizes an evaporator vessel and various supporting systems for heating, evaporating, and condensing low-heat-generating liquid waste produced it the Hanford Site. The process reduces the total volume of the liquid waste requiring storage in a double shell tank, making it more manageable for current storage as well as for future treatment and disposal. The main components of the 242-A Evaporator are the Reboiler, Vapor-Liquid Separator, Recirculation Pump and Pump Loop, Slurry System, Condenser System, Steam Jet Vacuum System, Condensate Collection Tank, and Ion Exchange System.
Date: September 29, 1994
Creator: Wahlquist, R. A.
Partner: UNT Libraries Government Documents Department
open access

222-S laboratory complex hazards assessment

Description: The US Department of Energy (DOE) Order 5500.3A, Emergency Planning and Preparedness for Operational Emergencies, requires that a facility specific hazards assessment be performed to support Emergency Planning activities. The Hazard Assessment establishes the technical basis for the Emergency Action Levels (EALs) and the Emergency Planning Zone (EPZ). Emergency Planning activities are provided under contract to DOE through the Westinghouse Hanford Company (WHC). This document represents the facility specific hazards assessment for the Hanford Site 222-S Laboratories. The primary mission of 222-S is to provide analytic chemistry support to the Waste Management, Chemical Processing, and Environmental programs at the Hanford Site.
Date: August 29, 1994
Creator: Broz, R. E.
Partner: UNT Libraries Government Documents Department
open access

241-Z-361 Sludge Characterization Sampling and Analysis Plan

Description: This sampling and analysis plan (SAP) identifies the type, quantity, and quality of data needed to support characterization of the sludge that remains in Tank 241-2-361. The procedures described in this SAP are based on the results of the 241-2-361 Sludge Characterization Data Quality Objectives (DQO) (BWHC 1999) process for the tank. The primary objectives of this project are to evaluate the contents of Tank 241-2-361 in order to resolve safety and safeguards issues and to assess alternatives for sludge removal and disposal.
Date: July 29, 1999
Creator: BANNING, D.L.
Partner: UNT Libraries Government Documents Department
open access

242-A Evaporator/Liquid Effluent Retention Facility data quality objectives

Description: The purpose of data quality objectives (DQO) is to determine the most cost effective methods of gathering the essential data necessary to make decisions to support successful operation of the facility. The essential data is defined by such information as sample amount, sample location, required analyses, and how sampling and analyses are performed. Successful operation is defined as meeting the campaign objectives while operating within established requirements. This DQO document addresses that portion of the system from 242-A Evaporator candidate feed tanks through discharge of process condensate to the Liquid Effluent Retention of Facility (LERF). Later revisions will incorporate and integrate the entire system, including the Effluent Treatment Facility (ETF).
Date: September 29, 1994
Creator: Von Bargen, B. H.
Partner: UNT Libraries Government Documents Department
open access

242-A Evaporator waste analysis plan. Revision 4

Description: This waste analysis plan (WAP) provides the plan for obtaining information needed for proper waste handling and processing in the 242-A Evaporator located on the Hanford Site. Regulatory and safety issues are addressed by establishing boundary conditions for waste received and treated at the 242-A Evaporator. The boundary conditions are set by establishing limits for items such as potential exothermic reactions, waste compatibility, and control of vessel vent organic emissions. Boundary conditions are also set for operational considerations and to ensure waste acceptance at receiving facilities. The issues that are addressed in this plan include prevention of exotherms in the waste, waste compatibility, vessel vent emissions, and compatibility with the liner in the Liquid Effluent Retention Facility (LERF). The 242-A Evaporator feed stream is separated into two liquid streams: a concentrated slurry stream and a process condensate. A gaseous exhaust stream is also produced. The slurry contains the majority of the radionuclides and inorganic constituents. This stream is pumped back to the double shell tanks (DSTs) and stored for further treatment after being concentrated to target levels. The process condensate (PC) is primarily water that contains trace amounts of organic material and a greatly reduced concentration of radionuclides. The process condensate is presently stored in the (LERF) until it can be further processed in the Effluent Treatment Facility once it is operational.
Date: September 29, 1994
Creator: Basra, T. S. & Mulkey, C. H.
Partner: UNT Libraries Government Documents Department
open access

The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

Description: Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.
Date: April 29, 2009
Creator: Fix, N. J.
Partner: UNT Libraries Government Documents Department
open access

324/327 facilities environmental effluent specifications

Description: These effluent technical specifications address requirements for the 324/327 facilities, which are undergoing stabilization activities. Effluent technical specifications are imposed to protect personnel, the environment and the public, by ensuring adequate implementation and compliance with federal and state regulatory requirements and Hanford programs.
Date: October 29, 1998
Creator: JOHNSON, D.L.
Partner: UNT Libraries Government Documents Department
open access

324 Building liquid waste handling and removal system project plan

Description: This report evaluates the modification options for handling radiological liquid waste generated during decontamination and cleanout of the 324 Building. Recent discussions indicate that the Hanford site railroad system will be closed by the end of FY 1998 necessitating the need for an alternate transfer method. The issue of handling of Radioactive Liquid Waste (RLW) from the 324 Building (assuming the 340 Facility is not available to accept the RLW) has been examined in at least two earlier engineering studies (Parsons 1997a and Hobart 1997). Each study identified a similar preferred alternative that included modifying the 324 Building RLWS to allow load-out of wastewater to a truck tanker, while making maximum use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes to the building. This alternative is accepted as the basis for further discussion presented in this study. The goal of this engineering study is to verify the path forward presented in the previous studies and assure that the selected alternative satisfies the 324 Building deactivation goals and objectives as currently described in the project management plan. This study will also evaluate options available to implement the preferred alternative and select the preferred option for implementation of the entire system. Items requiring further examination will also be identified. Finally, the study will provide a conceptual design, schedule and cost estimate for the required modifications to the 324 Building to allow removal of RLW. Attachment 5 is an excerpt from the project baseline schedule found in the Project Management Plan.
Date: July 29, 1998
Creator: Ham, J.E.
Partner: UNT Libraries Government Documents Department
Back to Top of Screen