34 Matching Results

Search Results

Advanced search parameters have been applied.

Three-dimensional lithographically-defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression

Description: Here we describe a simple micromolding method to construct three-dimensional arrays of organotypic epithelial tissue structures that approximate in vivo histology. An elastomeric stamp containing an array of posts of defined geometry and spacing is used to mold microscale cavities into the surface of type I collagen gels. Epithelial cells are seeded into the cavities and covered with a second layer of collagen. The cells reorganize into hollow tissues corresponding to the geometry of the cavities. Patterned tissue arrays can be produced in 3-4 h and will undergo morphogenesis over the following one to three days. The protocol can easily be adapted to study a variety of tissues and aspects of normal and neoplastic development.
Date: February 13, 2008
Creator: Nelson, Celeste M.; Inman, Jamie L. & Bissell, Mina J.
Partner: UNT Libraries Government Documents Department

Discontinuous Galerkin solution of the Navier-Stokes equations on deformable domains

Description: We describe a method for computing time-dependent solutions to the compressible Navier-Stokes equations on variable geometries. We introduce a continuous mapping between a fixed reference configuration and the time varying domain, By writing the Navier-Stokes equations as a conservation law for the independent variables in the reference configuration, the complexity introduced by variable geometry is reduced to solving a transformed conservation law in a fixed reference configuration, The spatial discretization is carried out using the Discontinuous Galerkin method on unstructured meshes of triangles, while the time integration is performed using an explicit Runge-Kutta method, For general domain changes, the standard scheme fails to preserve exactly the free-stream solution which leads to some accuracy degradation, especially for low order approximations. This situation is remedied by adding an additional equation for the time evolution of the transformation Jacobian to the original conservation law and correcting for the accumulated metric integration errors. A number of results are shown to illustrate the flexibility of the approach to handle high order approximations on complex geometries.
Date: January 13, 2009
Creator: Persson, P.-O.; Bonet, J. & Peraire, J.
Partner: UNT Libraries Government Documents Department

Measurement of groove features and dimensions of the vertical test cathode and the choke joint of the superconducting electron gun cavity of the Energy Recovery LINAC

Description: A testing program for the superconducting electron gun cavity that has been designed for the Energy Recovery LINAC is being planned. The goal of the testing program is to characterize the RF properties of the gun cavity at superconducting temperatures and, in particular, to study multipacting that is suspected to be occurring in the choke joint of the cavity where the vertical test cathode is inserted. The testing program will seek to understand the nature and cause of this multipacting and attempt to eliminate it, if possible, by supplying sufficient voltage to the cavity. These efforts are motivated by the multipacting issues that have been observed in the processing of the fine-grain niobium gun cavity. This cavity, which is being processed at Thomas Jefferson National Laboratory for Brookhaven, has encountered multipacting at a gradient of approximately 3 MV/m and, to date, has resisted efforts at elimination. Because of this problem, a testing program is being established here in C-AD that will use the large-grain niobium gun cavity that currently resides at Brookhaven and has been used for room-temperature measurements. The large-grain and fine-cavities are identical in every aspect of construction and only differ in niobium grain size. Thus, it is believed that testing and conditioning of the large-grain cavity should yield important insights about the fine-grain cavity. One element of this testing program involves characterizing the physical features of the choke joint of the cavity where the multipacting is believed to be occurring and, in particular the grooves of the joint. The configuration of the cavity and the vertical test cathode is shown in Figure 1. In addition, it is important to characterize the groove of the vertical test cathode. The grooved nature of these two components was specifically designed to prevent multipacting. However, it is suspected that, because of ...
Date: October 13, 2011
Creator: Hammons, L. & Ke, M.
Partner: UNT Libraries Government Documents Department

A Full-wave Model for Wave Propagation and Dissipation in the Inner Magnetosphere Using the Finite Element Method

Description: A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.
Date: March 13, 2012
Creator: Valeo, Ernest; Johnson, Jay R.; Eun-Hwa & Phillips, Cynthia
Partner: UNT Libraries Government Documents Department

Fragmentation in Biaxial Tension

Description: We have carried out an experiment that places a ductile stainless steel in a state of biaxial tension at a high rate of strain. The loading of the ductile metal spherical cap is performed by the detonation of a high explosive layer with a conforming geometry to expand the metal radially outwards. Simulations of the loading and expansion of the metal predict strain rates that compare well with experimental observations. A high percentage of the HE loaded material was recovered through a soft capture process and characterization of the recovered fragments provided high quality data, including uniform strain prior to failure and fragment size. These data were used with a modified fragmentation model to determine a fragmentation energy.
Date: June 13, 2006
Creator: Campbell, G H; Archbold, G C; Hurricane, O A & Miller, P L
Partner: UNT Libraries Government Documents Department

POTENTIAL SCALE DEPENDENCE OF EFFECTIVE MATRIX DIFFUSION COEFFICIENT

Description: It is well known that matrix diffusion (mass transfer between fractures and the rock matrix through molecular diffusion) can significantly retard solute transport processes in fractured rock, and therefore is important for analyzing a variety of problems, including geological disposal of nuclear waste. Matrix-diffusion-coefficient values measured from small rock samples in the laboratory are generally used for modeling field-scale solute transport in fractured rock. However, by compiling results from a number of field tracer tests corresponding to different geological settings, this study demonstrates that the effective matrix diffusion coefficient at field scale is generally larger than that at lab scale and tends to increase with testing scale. Preliminary interpretations of this observation are also investigated. We found that this interesting scale dependence may be related to the complexity of flow-path geometry in fractured rock.
Date: March 13, 2006
Creator: Liu, H.; Zhou, Q. & Zhang, Y.
Partner: UNT Libraries Government Documents Department

Copper Tube Compression in Z-Current Geometry, Numerical Simulations and Comparison with Cyclope Experiments

Description: Metallic tubes compressions in Z-current geometry were performed at the Cyclope facility from Gramat Research Center in order to study the behavior of metals under large strain at high strain rate [1]. 3D configurations of cylinder compressions have been calculated here to benchmark the new beta version of the electromagnetism package coupled with the dynamics in Ls-Dyna and compared with the Cyclope experiments. The electromagnetism module is being developed in the general-purpose explicit and implicit finite element program LS-DYNA{reg_sign} in order to perform coupled mechanical/thermal/electromagnetism simulations. The Maxwell equations are solved using a Finite Element Method (FEM) for the solid conductors coupled with a Boundary Element Method (BEM) for the surrounding air (or vacuum). More details can be read in the reference [2] [3].
Date: February 13, 2006
Creator: Lefrançois, A.; L'Eplattenier, P. & Burger, M.
Partner: UNT Libraries Government Documents Department

Isentropic Compression in a Strip Line, Numerical Simulations and Comparison with GEPI Shot 268

Description: Isentropic compressions in a strip line geometry are performed on the GEPI facility at Centre d'etudes de Gramat in order to study isentrope, associated Hugoniot and phase changes [1] [2]. 3D GEPI configuration has been calculated here to test the new beta version of the electromagnetism package coupled with the dynamics in LS-DYNA{reg_sign} and compared with the GEPI experiment number 268.
Date: February 13, 2006
Creator: Lefrançois, A; L'Eplattenier, P. & Burger, M.
Partner: UNT Libraries Government Documents Department

Distributed Data-Flow for In-Situ Visualization and Analysis at Petascale

Description: We conducted a feasibility study to research modifications to data-flow architectures to enable data-flow to be distributed across multiple machines automatically. Distributed data-flow is a crucial technology to ensure that tools like the VisIt visualization application can provide in-situ data analysis and post-processing for simulations on peta-scale machines. We modified a version of VisIt to study load-balancing trade-offs between light-weight kernel compute environments and dedicated post-processing cluster nodes. Our research focused on memory overheads for contouring operations, which involves variable amounts of generated geometry on each node and computation of normal vectors for all generated vertices. Each compute node independently decided whether to send data to dedicated post-processing nodes at each stage of pipeline execution, depending on available memory. We instrumented the code to allow user settable available memory amounts to test extremely low-overhead compute environments. We performed initial testing of this prototype distributed streaming framework, but did not have time to perform scaling studies at and beyond 1000 compute-nodes.
Date: March 13, 2009
Creator: Laney, D E & Childs, H R
Partner: UNT Libraries Government Documents Department

Angularly Adaptive P1-Double P0 Flux-Limited Diffusion Solutions of Non-Equilibrium Grey Radiative Transfer Problems

Description: The double spherical harmonics angular approximation in the lowest order, i.e. double P{sub 0} (DP{sub 0}), is developed for the solution of time-dependent non-equilibrium grey radiative transfer problems in planar geometry. Although the DP{sub 0} diffusion approximation is expected to be less accurate than the P{sub 1} diffusion approximation at and near thermodynamic equilibrium, the DP{sub 0} angular approximation can more accurately capture the complicated angular dependence near a non-equilibrium radiation wave front. In addition, the DP{sub 0} approximation should be more accurate in non-equilibrium optically thin regions where the positive and negative angular domains are largely decoupled. We develop an adaptive angular technique that locally uses either the DP{sub 0} or P{sub 1} flux-limited diffusion approximation depending on the degree to which the radiation and material fields are in thermodynamic equilibrium. Numerical results are presented for two test problems due to Su and Olson and to Ganapol and Pomraning for which semi-analytic transport solutions exist. These numerical results demonstrate that the adaptive P{sub 1}-DP{sub 0} diffusion approximation can yield improvements in accuracy over the standard P{sub 1} diffusion approximation, both without and with flux-limiting, for non-equilibrium grey radiative transfer.
Date: December 13, 2005
Creator: Brantley, P S
Partner: UNT Libraries Government Documents Department

Bragg diffraction using a 100ps 17.5 keV x-ray backlighter and the Bragg Diffraction Imager

Description: A new diagnostic for measuring Bragg diffraction from a laser-driven crystal using a 100ps 17.5 kV x-ray backlighter source is designed and tested successfully at the Omega EP laser facility on static Mo and Ta single crystal samples using a Mo Ka backlighter. The Bragg Diffraction Imager (BDI) consists of a heavily shielded enclosure and a precisely positioned beam block, attached to the main enclosure by an Aluminum arm. Image plate is used as the x-ray detector. The diffraction lines from Mo and Ta <222> planes are clearly detected with a high signal-to-noise using the 17.5 keV and 19.6 keV characteristic lines generated by a petawatt-driven Mo foil. This technique will be applied to shock and ramp-loaded single crystals on the Omega EP laser. Pulsed x-ray diffraction of shock- and ramp-compressed materials is an exciting new technique that can give insight into the dynamic behavior of materials at ultra-high pressure not achievable by any other means to date. X-ray diffraction can be used to determine not only the phase and compression of the lattice at high pressure, but by probing the lattice compression on a timescale equal to the 3D relaxation time of the material, information about dislocation mechanics, including dislocation multiplication rate and velocity, can also be derived. Both Bragg, or reflection, and Laue, or transmission, diffraction have been developed for shock-loaded low-Z crystalline structures such as Cu, Fe, and Si using nano-second scale low-energy implosion and He-{alpha} x-ray backlighters. However, higher-Z materials require higher x-ray probe energies to penetrate the samples, such as in Laue, or probe deep enough into the target, as in the case of Bragg diffraction. Petawatt laser-generated K{alpha} x-ray backlighters have been developed for use in high-energy radiography of dense targets and other HED applications requiring picosecond-scale burst of hard x-rays. While short pulse ...
Date: May 13, 2010
Creator: Maddox, B R; Park, H; Hawreliak, J; Comley, A; Elsholz, A; Van Maren, R et al.
Partner: UNT Libraries Government Documents Department

Self-potential observations during hydraulic fracturing

Description: The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.
Date: September 13, 2007
Creator: Moore, Jeffrey R. & Glaser, Steven D.
Partner: UNT Libraries Government Documents Department

The Center for Multiscale Plasma Dynamics, Final Report

Description: The University of Michigan participated in the joint UCLA/Maryland fusion science center focused on plasma physics problems for which the traditional separation of the dynamics into microscale and macroscale processes breaks down. These processes involve large scale flows and magnetic fields tightly coupled to the small scale, kinetic dynamics of turbulence, particle acceleration and energy cascade. The interaction between these vastly disparate scales controls the evolution of the system. The enormous range of temporal and spatial scales associated with these problems renders direct simulation intractable even in computations that use the largest existing parallel computers. Our efforts focused on two main problems: the development of Hall MHD solvers on solution adaptive grids and the development of solution adaptive grids using generalized coordinates so that the proper geometry of inertial confinement can be taken into account and efficient refinement strategies can be obtained.
Date: October 13, 2008
Creator: Gombosi, Tamas I.
Partner: UNT Libraries Government Documents Department

Trip Report-Visit to CERN July 5 to August 5, 1985

Description: The present visit to CERN was as a result of an invitation from Dr. Colin Johnson of the Antiproton Accumulator (AA) group. Two activities were planned for this visit. First, the second beam test of one of the original Fermilab lithium lenses (serial No.2). Second, the installation and beam tests for a new Fermilab lens of improved design (serial No.5). It should be mentioned here that CERN, after realizing the possible gains to be obtained, has started a considerable development effort in short focal length lenses. Presently they have 3 operational lithium lenses, transformers and power supplies for tests. They are in the process of constructing 3 other transformers and designing lenses of 4 cm diameter (twice the present Fermilab lenses). Fermilab should devote some added effort in the field to maintain the initiative. The first beam test of lens No.2 was performed during the summer of 1983, when the lens was used as an antiproton collecting lens. For this test the original lens was used as a strong focusing element in the 26 GeV proton beam in conjunction with a current carrying target Preliminary tests for this geometry were conducted during 1984, when the lens was exposed to over 2*E6 pulses at 320kAmps and 1.3*E13 protons per pulse. Lens No.5 was installed as an antiproton collecting lens, immediately following the AA production target, in a geometry similar to the one designed for the Tevatron 1 project at Fermilab. Targets of a different design than the one use normally at CERN were also required. After completion of the antiproton yield measurements and optimization the lens was left in the beam during regular operation for antiproton accumulation. During antiproton accumulation for the Lear accelerator new records were achieved on the accumulation yield and accumulation rate of antiprotons for the AA machine. ...
Date: September 13, 1985
Creator: Hogvat, C.
Partner: UNT Libraries Government Documents Department

A High-Resolution Godunov Method for Compressible Multi-Material Flow on Overlapping Grids

Description: A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on a uniform pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of an planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.
Date: February 13, 2006
Creator: Banks, J W; Schwendeman, D W; Kapila, A K & Henshaw, W D
Partner: UNT Libraries Government Documents Department

Realizing novel accelerator concepts in an X-band photo-injector

Description: In this project we propose to investigate the use of novel accelerator structure cell geometry to enhance the performance of X-band photo-injectors. Making novel accelerator concepts possible involves fabrication and testing of components to ensure that the performance predicted by simulation is robustly achievable. This work is important because photo-injectors are increasingly used to provide high brightness electron beams for light sources, pushing their performance to the limits, but also requiring them to be user-facility stable. Careful investigation in both computer simulation and design, and low power testing of piece parts will enable the successful fabrication of an advanced X-band photo-injector.
Date: April 13, 2010
Creator: Marsh, R
Partner: UNT Libraries Government Documents Department

Calculation of Photoneutrons from Varian Clinac Accelerators and Their Transmissions in Materials

Description: Monte Carlo calculations of the giant-dipole-resonance photoneutrons (GRN) around the Varian Clinac 2100C/2300C medical accelerator heads (10-20 MV modes) were made using the coupled EGS4-MORSE code. The actual head materials and geometries were simulated in great detail using the Combinatorial Geometry facility of MORSE. The neutron production (i.e., sites and yields) was calculated with EGS4 and, then, the neutron transport in the accelerator head was done with MORSE. Both the evaporation and direct neutron components of the GRN were considered by incorporating the EVAP4 code and an empirical algorithm, respectively, into MORSE. With the calculated neutron spectra around the head as source terms, MCNP4a was used to estimate the corresponding dose equivalent transmission (considering both the neutron attenuation and the build-up of captured gamma rays) in several different types of concrete. The calculated results of the absolute neutron fluence and spectra around the heads, as well as the transmission curves, are presented and discussed.
Date: November 13, 2006
Creator: Liu, J.C.; Kase, K.R.; Mao, X.S.; Nelson, W.R.; Kleck, J.H.; Johnson, S. et al.
Partner: UNT Libraries Government Documents Department

Interim report on fuel cycle neutronics code development.

Description: As part of the Global Nuclear Energy Partnership (GNEP), a fast reactor simulation program was launched in April 2007 to develop a suite of modern simulation tools specifically for the analysis and design of sodium cooled fast reactors. The general goal of the new suite of codes is to reduce the uncertainties and biases in the various areas of reactor design activities by enhanced prediction capabilities. Under this fast reactor simulation program, a high-fidelity deterministic neutron transport code named UNIC is being developed. The final objective is to produce an integrated, advanced neutronics code that allows the high fidelity description of a nuclear reactor and simplifies the multi-step design process by direct coupling with thermal-hydraulics and structural mechanics calculations. Currently there are three solvers for the neutron transport code incorporated in UNIC: PN2ND, SN2ND, and MOCFE. PN2ND is based on a second-order even-parity spherical harmonics discretization of the transport equation and its primary target area of use is the existing homogenization approaches that are prevalent in reactor physics. MOCFE is based upon the method of characteristics applied to an unstructured finite element mesh and its primary target area of use is the fine grained nature of the explicit geometrical problems which is the long term goal of this project. SN2ND is based on a second-order, even-parity discrete ordinates discretization of the transport equation and its primary target area is the modeling transition region between the PN2ND and MOCFE solvers. The major development goal in fiscal year 2008 for the MOCFE solver was to include a two-dimensional capability that is scalable to hundreds of processors. The short term goal of this solver is to solve two-dimensional representations of reactor systems such that the energy and spatial self-shielding are accounted for and reliable cross sections can be generated for the homogeneous calculations. ...
Date: May 13, 2008
Creator: Rabiti, C; Smith, M. A.; Kaushik, D. & Yang, W. S.
Partner: UNT Libraries Government Documents Department

Model for Initiation of Quality Factor Degradation at High Accelerating Fields in Superconducting Radio-Frequency Cavaties

Description: A model for the onset of the reduction in SRF cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration H{sub pen}. Such defects were argued to be the worst case by Buzdin and Daumens, [1998 Physica C 294 257], whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter {kappa}. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of H{sub pen} when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower H{sub pen} was predicted when both effects were combined, i.e. contamination should exacerbate the negative effects of roughness and vice-versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of {kappa}. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by {approx}20%, and that that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images ...
Date: July 13, 2010
Creator: Dzyuba, A.; U., /Fermilab /Novosibirsk State; Romanenko, A.; /Fermilab; Cooley, L.D. & /Fermilab
Partner: UNT Libraries Government Documents Department

Simulator for the Linear Collider (SLIC): a Tool for ILC Detector Simulations

Description: The Simulator for the Linear Collider (SLIC) is a detector simulation program based on the GEANT4 toolkit. It is intended to enable end users to easily model detector concepts by providing the ability to fully describe detectors using plain text files read in by a common executable at runtime. The detector geometry, typically the most complex part of a detector simulation, is described at runtime using the Linear Collider Detector Description (LCDD). This system allows end users to create complex detector geometries in a standard XML format rather than procedural code such as C++. The LCDD system is based on the Geometry Description Markup Language (GDML) from the LHC Applications Group (LCG). The geometry system facilitates the study of different full detector design and their variations. SLIC uses the StdHep format to read input created by event generators and outputs events in the Linear Collider IO (LCIO) format. The SLIC package provides a binding to GEANT4 and many additional commands and features for the end user.
Date: February 13, 2007
Creator: Graf, N. & McCormick, J.
Partner: UNT Libraries Government Documents Department

Global Monte Carlo Simulation with High Order Polynomial Expansions

Description: The functional expansion technique (FET) was recently developed for Monte Carlo simulation. The basic idea of the FET is to expand a Monte Carlo tally in terms of a high order expansion, the coefficients of which can be estimated via the usual random walk process in a conventional Monte Carlo code. If the expansion basis is chosen carefully, the lowest order coefficient is simply the conventional histogram tally, corresponding to a flat mode. This research project studied the applicability of using the FET to estimate the fission source, from which fission sites can be sampled for the next generation. The idea is that individual fission sites contribute to expansion modes that may span the geometry being considered, possibly increasing the communication across a loosely coupled system and thereby improving convergence over the conventional fission bank approach used in most production Monte Carlo codes. The project examined a number of basis functions, including global Legendre polynomials as well as “local” piecewise polynomials such as finite element hat functions and higher order versions. The global FET showed an improvement in convergence over the conventional fission bank approach. The local FET methods showed some advantages versus global polynomials in handling geometries with discontinuous material properties. The conventional finite element hat functions had the disadvantage that the expansion coefficients could not be estimated directly but had to be obtained by solving a linear system whose matrix elements were estimated. An alternative fission matrix-based response matrix algorithm was formulated. Studies were made of two alternative applications of the FET, one based on the kernel density estimator and one based on Arnoldi’s method of minimized iterations. Preliminary results for both methods indicate improvements in fission source convergence. These developments indicate that the FET has promise for speeding up Monte Carlo fission source convergence.
Date: December 13, 2007
Creator: Martin, William R.; Holloway, James Paul; Banerjee, Kaushik; Cheatham, Jesse & Conlin, Jeremy
Partner: UNT Libraries Government Documents Department

Influence of Lithophysal Geometry on the Uniaxial Compression of Tuff-Like Rock

Description: A large portion of the rock of the high-level nuclear waste repository at Yucca Mountain contains lithophysae or voids. These voids have a significant detrimental effect on the engineering properties of the rock mass and its performance. The lithophysae were formed at the time of volcanic deposition by pockets of gas trapped within the compressing and cooling pyroclastic flow material. Lithophysae vary by size, shape, and spatial frequency of occurrence. Due to the difficulties of testing actual lithophysal rock, the current mechanical property data set is limited and the numerical models of lithophysal rock are not well validated. The purpose of this task was to experimentally quantify the effect of void geometry in the mechanical compression of cubes of analog lithophysal-like rock. In this research the mechanical properties of the analog rock were systematically studied by examining various patterns of voids based on variables consisting of hole shape, size, and geometrical distribution. Each specified hole pattern was cast into 6 by 6 by 6-in. Hydro-StoneTB® specimens (produced in triplicate) and then tested under uniaxial compression. Solid Hydro-StoneTB® specimens exhibited similar mechanical properties to those estimated for rock mass solid specimens of Topopah Spring tuff. The results indicated that the compressive strength and Young’s Modulus values decrease with increasing specimen void porosity. The modulus and strength with void porosity relationships are essentially linear over the 5 to 20 percent void porosity range. When zero void porosity (solid specimen) results are added, exponential functions do not provide a good fit to the data due to a significant sensitivity of strength and modulus to the presence of macro-sized voids. From solid specimens there is roughly a 60 percent drop in strength with about 7 percent void porosity, increasing to an 80 percent drop at about 20 percent void porosity. The percent change in ...
Date: June 13, 2007
Creator: Rigby, Douglas B.
Partner: UNT Libraries Government Documents Department