7 Matching Results

Search Results

Advanced search parameters have been applied.

Phase Segregation in Polystyrene?Polylactide Blends

Description: Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. A phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.
Date: June 9, 2010
Creator: Leung, Bonnie; Hitchcock, Adam; Brash, John; Scholl, Andreas & Doran, Andrew
Partner: UNT Libraries Government Documents Department

Stripe-to-bubble transition of magnetic domains at the spin reorientation of (Fe/Ni)/Cu/Ni/Cu(001)

Description: Magnetic domain evolution at the spin reorientation transition (SRT) of (Fe/Ni)/Cu/Ni/Cu(001) is investigated using photoemission electron microscopy. While the (Fe/Ni) layer exhibits the SRT, the interlayer coupling of the perpendicularly magnetized Ni layer to the (Fe/Ni) layer serves as a virtual perpendicular magnetic field exerted on the (Fe/Ni) layer. We find that the perpendicular virtual magnetic field breaks the up-down symmetry of the (Fe/Ni) stripe domains to induce a net magnetization in the normal direction of the film. Moreover, as the virtual magnetic field increases to exceed a critical field, the stripe domain phase evolves into a bubble domain phase. Although the critical field depends on the Fe film thickness, we show that the area fraction of the minority domain exhibits a universal value that determines the stripe-to-bubble phase transition.
Date: June 9, 2010
Creator: Wu, J.; Choi, J.; Won, C.; Wu, Y. Z.; Scholl, A.; Doran, A. et al.
Partner: UNT Libraries Government Documents Department

TOF Electron Energy Analyzer for Spin and Angular Resolved Photoemission Spectroscopy

Description: Current pulsed laser and synchrotron x-ray sources provide new opportunities for Time-Of- Flight (TOF) based photoemission spectroscopy to increase photoelectron energy resolution and efficiency compared to current standard techniques. The principals of photoelectron timing front formation, temporal aberration minimization, and optimization of electron beam transmission are presented. We have developed these concepts into a high resolution Electron Optical Scheme (EOS) of a TOF Electron Energy Analyzer (TOF-EEA) for photoemission spectroscopy. The EOS of the analyzer includes an electrostatic objective lens, three columns of transport lenses and a 90 degree energy band pass filter (BPF). The analyzer has two modes of operation: Spectrometer Mode (SM) with straight passage of electrons through the EOS undeflected by the BPF, allowing the entire spectrum to be measured, and Monochromator Mode (MM) in which the BPF defines a certain energy window inside the scope of the electron energy spectrum.
Date: July 9, 2008
Creator: Lebedev, Gennadi; Jozwiak, Chris; Andresen, Nord; Lanzara, Alessandra & Hussain, Zahid
Partner: UNT Libraries Government Documents Department

Ultrafast dynamics in helium nanodroplets probed by femtosecond time-resolved EUV photoelectron imaging

Description: The dynamics of electronically excited helium nanodroplets are studied by femtosecond time-resolved photoelectron imaging. EUV excitation into a broad absorption band centered around 23.8 eV leads to an indirect photoemission process that generates ultraslow photoelectrons. A 1.58 eV probe pulse transiently depletes the indirect photoemission signal for pump-probe time delays <200 fs and enhances the signal beyond this delay. The depletion is due to suppression of the indirect ionization process by the probe photon, which generates a broad, isotropically emitted photoelectron band. Similar time scales in the decay of the high energy photoelectron signal and the enhancement of the indirect photoemission signal suggest an internal relaxation process that populates states in the range of a lower energy droplet absorption band located just below the droplet ionization potential (IP {approx} 23.0 eV). A nearly 70% enhancement of the ultraslow photoelectron signal indicates that interband relaxation plays a more dominant role for the droplet de-excitation mechanism than photoemission.
Date: July 9, 2010
Creator: Kornilov, Oleg; Wang, Chia C.; Buenermann, Oliver; Healy, Andrew T.; Leonard, Mathew; Peng, Chunte et al.
Partner: UNT Libraries Government Documents Department

X-ray Spectromicroscopy Study of Protein Adsorption to a Polystyrene-Polylactide Blend

Description: Synchrotron-based X-ray photoemission electron microscopy (X-PEEM) was used to study the adsorption of human serum albumin (HSA) to polystyrene-polylactide (40:60 PS-PLA, 0.7 wt percent) thin films, annealed under various conditions. The rugosity of the substrate varied from 35 to 90 nm, depending on the annealing conditions. However, the characteristics of the protein adsorption (amounts and phase preference) were not affected by the changes in topography. The adsorption was also not changed by the phase inversion which occured when the PS-PLA substrate was annealed above Tg of the PLA. The amount of protein adsorbed depended on whether adsorption took place from distilled water or phosphate buffered saline solution. These differences are interpreted as a result of ionic strength induced changes in the protein conformation in solution.
Date: June 9, 2010
Creator: Leung, Bonnie; Hitchcock, Adam; Cornelius, Rena; Brash, John; Scholl, Andreas & Doran, Andrew
Partner: UNT Libraries Government Documents Department


Description: High-resolution synchrotron based photoemission and x-ray absorption spectroscopy have been used to study the interaction of SO{sub 2} with a series of metals and oxides. The chemistry of SO{sub 2} on metal surfaces is rich. At low coverages, the molecule fully decomposes into atomic S and O. At large coverages, the formation of SO{sub 3} and SO{sub 4} takes place. The following sequence was found for the reactivity of the metals towards SO{sub 2}: Pt {approx} Rh < Ru < Mo << Zn, Sn, Cs. Alloying can be useful for reducing the chemical affinity of a metal for SO{sub 2} and controlling S poisoning. Pd atoms bonded to Rh and Pt atoms bonded to Sn interact weakly with SO{sub 2}. In general, SO{sub 2} mainly reacts with the O centers of metal oxides. SO{sub 4} is formed on CeO{sub 2} and SO{sub 3} on ZnO. On these systems there is no decomposition of SO{sub 2}. Dissociation of the molecule is observed after introducing a large amount of Ce{sup 3+} sites in ceria, or after depositing Cu or alkali metals on the oxide surfaces. These promote the catalytic activity of the oxides during the destruction of SO{sub 2}.
Date: July 9, 2000
Partner: UNT Libraries Government Documents Department

Near-Field Spectroscopy of Selectively Oxidized Vertical Cavity Surface Emitting Lasers

Description: Selectively oxidized vertical cavity surface emitting lasers (VCSELS) have been studied by spectrally resolved near field scanning optical microscopy (NSOM). We have obtained spatially and spectrally resolved images of both subthreshold emission and lasing emission from a selectively oxidized VCSEL operating at a wavelength of 850 nm. Below threshold, highly local high gain regions, emitting local intensity maxima within the active area, were observed; these were found to serve as lasing centers just above threshold. Above threshold, the near field spatial modal distributions of low order transverse modes were identified by spectrally analyzing the emission; these were found to be complex and significantly different from those measured in the far field.
Date: December 9, 1999
Partner: UNT Libraries Government Documents Department