26 Matching Results

Search Results

Advanced search parameters have been applied.

Vacuum Systems Consensus Guideline for Department of Energy Accelerator Laboratories

Description: Vacuum vessels, including evacuated chambers and insulated jacketed dewars, can pose a potential hazard to equipment and personnel from collapse, rupture due to back-fill pressurization, or implosion due to vacuum window failure. It is therefore important to design and operate vacuum systems in accordance with applicable and sound engineering principles. 10 CFR 851 defines requirements for pressure systems that also apply to vacuum vessels subject to back-fill pressurization. Such vacuum vessels are potentially subject to the requirements of the American Society of Mechanical Engineers (ASME) Pressure Vessel Code Section VIII (hereafter referred to as the 'Code'). However, the scope of the Code excludes vessels with internal or external operating pressure that do not exceed 15 pounds per square inch gauge (psig). Therefore, the requirements of the Code do not apply to vacuum systems provided that adequate pressure relief assures that the maximum internal pressure within the vacuum vessel is limited to less than 15 psig from all credible pressure sources, including failure scenarios. Vacuum vessels that cannot be protected from pressurization exceeding 15 psig are subject to the requirements of the Code. 10 CFR 851, Appendix A, Part 4, Pressure Safety, Section C addresses vacuum system requirements for such cases as follows: (c) When national consensus codes are not applicable (because of pressure range, vessel geometry, use of special materials, etc.), contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local code. Measures must include the following: (1) Design drawings, sketches, and calculations must be reviewed and approved by a qualified independent design professional (i.e., professional engineer). Documented organizational peer review is acceptable. (2) Qualified personnel must be used to perform examinations and inspections of materials, in-process fabrications, ...
Date: September 9, 2008
Creator: Casey,R.; Haas, E.; Hseuh, H-C.; Kane, S.; Lessard, E.; Sharma, S. et al.
Partner: UNT Libraries Government Documents Department

A keff Search Capability in MC21

Description: The MC21 Monte Carlo code is required to permit an individual geometric component or groups of components to be tagged as ''movable'' within some permissible range. Typical examples of such movable components would be control devices such as translating rods or rotating drums. Given this geometric information, a target multiplication factor (k{sub eff}), and a convergence criterion, MC21 will iterate on movable component positions and return a final position that reflects a k{sub eff} close to the target value. An initial version of this capability is demonstrated through modifications to MC21 that sets the geometry data structures for the movable components, calls the main Fortran-95 solver to compute k{sub eff}, and converges on the final position. This approach uses an adaptive batching algorithm that continually increases the accuracy of each successive MC21 k{sub eff} result as the movable geometry approaches the converged position.
Date: January 9, 2007
Creator: Morrow RE, Trumbull TH, Donovan TJ, Sutton TM
Partner: UNT Libraries Government Documents Department

The MC21 Monte Carlo Transport Code

Description: MC21 is a new Monte Carlo neutron and photon transport code currently under joint development at the Knolls Atomic Power Laboratory and the Bettis Atomic Power Laboratory. MC21 is the Monte Carlo transport kernel of the broader Common Monte Carlo Design Tool (CMCDT), which is also currently under development. The vision for CMCDT is to provide an automated, computer-aided modeling and post-processing environment integrated with a Monte Carlo solver that is optimized for reactor analysis. CMCDT represents a strategy to push the Monte Carlo method beyond its traditional role as a benchmarking tool or ''tool of last resort'' and into a dominant design role. This paper describes various aspects of the code, including the neutron physics and nuclear data treatments, the geometry representation, and the tally and depletion capabilities.
Date: January 9, 2007
Creator: Sutton TM, Donovan TJ, Trumbull TH, Dobreff PS, Caro E, Griesheimer DP, Tyburski LJ, Carpenter DC, Joo H
Partner: UNT Libraries Government Documents Department

Neoclassical Simulation of Tokamak Plasmas using Continuum Gyrokinetc Code TEMPEST

Description: We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. With our 4D ({psi}, {theta}, {epsilon}, {mu}) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices.
Date: November 9, 2007
Creator: Xu, X Q
Partner: UNT Libraries Government Documents Department

Electromagnetic Confined Plasma Target for Interaction Studies with Intense Laser Fields

Description: The paper describes a novel application of an electron beam ion trap as a plasma target facility for intense laser-plasma interaction studies. The low density plasma target ({approx}10{sup 13}/cm{sup 3}) is confined in a mobile cryogenic electromagnetic charged particle trap, with the magnetic confinement field of 1-3T maintained by a superconducting magnet. Ion plasmas for a large variety of ion species and charge states are produced and maintained within the magnetic field and the space charge of an energetic electron beam in the ''Electron Beam Ion Trap'' (EBIT) geometry. Intense laser beams (optical lasers, x-ray lasers and upcoming ''X-Ray Free Electron Lasers'' (XFEL)) provide strong time varying electromagnetic fields (>10{sup 12} V/cm in femto- to nano-sec pulses) for interactions with electromagnetically confined neutral/non-neutral plasmas. The experiments are aimed to gain understanding of the effects of intense photon fields on ionization/excitation processes, the ionization balance, as well as photon polarization effects. First experimental scenarios and tests with an intense laser that utilize the ion plasma target are outlined.
Date: August 9, 2006
Creator: Zielbauer, B; Ursescu, U; Trotsenko, S; Spillmann, U; Schuch, R; Stohlker, T et al.
Partner: UNT Libraries Government Documents Department

Methods for Quantifying Shallow-Water Habitat Availability in the Missouri River

Description: As part of regulatory requirements for shallow-water habitat (SWH) restoration, the U.S. Army Corps of Engineers (USACE) completes periodic estimates of the quantity of SWH available throughout the lower 752 mi of the Missouri River. To date, these estimates have been made by various methods that consider only the water depth criterion for SWH. The USACE has completed estimates of SWH availability based on both depth and velocity criteria at four river bends (hereafter called reference bends), encompassing approximately 8 river miles within the lower 752 mi of the Missouri River. These estimates were made from the results of hydraulic modeling of water depth and velocity throughout each bend. Hydraulic modeling of additional river bends is not expected to be completed for deriving estimates of available SWH. Instead, future estimates of SWH will be based on the water depth criterion. The objective of this project, conducted by the Pacific Northwest National Laboratory for the USACE Omaha District, was to develop geographic information system methods for estimating the quantity of available SWH based on water depth only. Knowing that only a limited amount of water depth and channel geometry data would be available for all the remaining bends within the lower 752 mi of the Missouri River, the intent was to determine what information, if any, from the four reference bends could be used to develop methods for estimating SWH at the remaining bends. Specifically, we examined the relationship between cross-section channel morphology and relative differences between SWH estimates based on combined depth and velocity criteria and the depth-only criterion to determine if a correction factor could be applied to estimates of SWH based on the depth-only criterion. In developing these methods, we also explored the applicability of two commonly used geographic information system interpolation methods (TIN and ANUDEM) for estimating ...
Date: April 9, 2012
Creator: Hanrahan, Timothy P. & Larson, Kyle B.
Partner: UNT Libraries Government Documents Department

Modeling the Effects of Crevice Former, Partculates, and the Evolving Surface Profile in Crevice Corrsion

Description: Crevice corrosion is an important mode of localized corrosion to be evaluated for the long-term performance of corrosion resistant alloys in high temperature, aqueous environments. This work focuses on the evolution of corrosion damage of Ni-Cr-Mo alloys in hot brines. For the initiation of crevice corrosion, a critical crevice chemistry must develop within the crevice to break down the passive film. The geometry of the crevice and particularly the height of the crevice gap is an important parameter, with tighter crevices being more aggressive. Crevice corrosion models mostly define a smooth walled crevice of uniform gap and do not account for the changing profile after crevice corrosion has initiated. As a complement to the earlier models of the cathodic region, they focus here on the crevice (anodic) region and apply current and potential distribution models to examine the effects of the perturbed surface topography. The analysis focuses on three related issues: (1) the effects surface roughness of the metal and the crevice former, (2) the effects of particulate within the crevice, and (3) the evolution of the crevice profile in the active, anodic region.
Date: June 9, 2006
Creator: Landau, U.; Agarwal, A.S.; Shan, X. & Payer, J.H.
Partner: UNT Libraries Government Documents Department


Description: This project seeks to compute ground motions for large (M>6.5) scenario earthquakes on the Hayward Fault using realistic pseudodynamic ruptures, the USGS three-dimensional (3D) velocity model and anelastic finite difference simulations on parallel computers. We will attempt to bound ground motions by performing simulations with suites of stochastic rupture models for a given scenario on a given fault segment. The outcome of this effort will provide the average, spread and range of ground motions that can be expected from likely large earthquake scenarios. The resulting ground motions will be based on first-principles calculations and include the effects of slip heterogeneity, fault geometry and directivity, however, they will be band-limited to relatively low-frequency (< 1 Hz).
Date: January 9, 2008
Creator: Rodgers, A & Xie, X
Partner: UNT Libraries Government Documents Department

Continuum Edge Gyrokinetic Theory and Simulations

Description: The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f) five dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential, and mirror ratio; and the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regime with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found to agree with the standard neoclassical expression for steep density and ion temperature gradients in the banana regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than the core neoclassical predictions in the SOL. (5) Our 5D gyrokinetic formulation yields a set of nonlinear electrostatic gyrokinetic equations that are for both neoclassical and turbulence simulations.
Date: January 9, 2007
Creator: Xu, X Q; Xiong, Z; Dorr, M R; Hittinger, J A; Bodi, K; Candy, J et al.
Partner: UNT Libraries Government Documents Department

Direct Measurement of the Transverse Wakefields of Tapered Collimators

Description: We report on a recent set of measurements of the transverse wakefields from longitudinally-tapered collimators. The measurements were performed with a low-emittance 1.19 GeV beam in the SLAC linac by inserting a collimator aperture into the beam path and reconstructing the vertical deflection of the beam as a function of the vertical position of the aperture. Each collimator in the experiment was designed to present a relatively large transverse impedance and to minimize the impedance from other contributions such as resistivity. In addition, the collimator parameters were chosen to provide some insight into the scaling of the transverse geometric wakefield as a function of the collimator's geometry. Description of the experimental apparatus and the aperture design, method of data collection and analysis, and comparison to theoretical and numerical predictions are presented.
Date: January 9, 2007
Creator: Tenenbaum, P.; Bane, K.L.F.; Eriksson, L.; Irwin, J.; Jobe, R.K.; McCormick, D. et al.
Partner: UNT Libraries Government Documents Department

New Developments in Deformation Experiments at High Pressure

Description: Although the importance of rheological properties in controlling the dynamics and evolution of the whole mantle of Earth is well-recognized, experimental studies of rheological properties and deformation-induced microstructures have mostly been limited to low-pressure conditions. This is mainly a result of technical limitations in conducting quantitative rheological experiments under high-pressure conditions. A combination of factors is changing this situation. Increased resolution of composition and configuration of Earth's interior has created a greater demand for well-resolved laboratory measurement of the effects of pressure on the behavior of materials. Higher-strength materials have become readily available for containing high-pressure research devices, and new analytical capabilities--in particular very bright synchrotron X-ray sources--are now readily available to high-pressure researchers. One of the biggest issues in global geodynamics is the style of mantle convection and the nature of chemical differentiation associated with convectional mass transport. Although evidence for deep mantle circulation has recently been found through seismic tomography (e.g., van der Hilst et al. (1997)), complications in convection style have also been noted. They include (1) significant modifications of flow geometry across the mantle transition zone as seen from high resolution tomographic studies (Fukao et al. 1992; Masters et al. 2000; van der Hilst et al. 1991) and (2) complicated patterns of flow in the deep lower mantle ({approx}1500-2500 km), perhaps caused by chemical heterogeneity (Kellogg et al. 1999; van der Hilst and Karason 1999). These studies indicate that while large-scale circulation involving the whole mantle no doubt occurs, significant deviations from simple flow geometry are also present. Two mineral properties have strong influence on convection: (1) density and (2) viscosity (rheology) contrasts. In the past, the effects of density contrast have been emphasized (Honda et al. 1993; Kellogg et al. 1999; Tackley et al. 1993), and the influence of rheology has been demonstrated by geodynamic ...
Date: January 9, 2004
Creator: Durham, W B; Weidner, D J; Karato, S & Wang, Y
Partner: UNT Libraries Government Documents Department

Modifications of the LCLS Photoinjector Beamline

Description: The LCLS Photoinjector beamline is now in the Design and Engineering stage. The fabrication and installation of this beamline is scheduled for the summer 2006. The Photoinjector will deliver 10 ps long electron bunches of 1nC with a normalized transverse emittance of less than 1 mm.mrad for 80% of the slices constituting the core of the bunch at 135 MeV. The calculations done to finalize the specifications of the photoinjector beamline components are described. Modifications include a new exit energy, additional focusing between the two linac modules, the insertion of a ''laser heater'', and a new geometry for the coupling cells of the RF structures. We also discuss two interesting tunings, one for the nominal charge of 1nC but using a longer laser pulse and the second one for a lower charge of 0.2nC. Sensitivity to field errors and misalignment for those two new configurations is compared to that of the nominal tuning.
Date: May 9, 2005
Creator: Dowell, D.; Gierman, S.M.; Limborg-Deprey, C. & /SLAC
Partner: UNT Libraries Government Documents Department

Theory and Fluid Simulations of Boundary Plasma Fluctuations

Description: Theoretical and computational investigations are presented of boundary plasma microturbulence that take into account important effects of the geometry of diverted tokamaks--in particular, the effect of x-point magnetic shear and the termination of field lines on divertor plates. We first generalize our previous 'heuristic boundary condition' which describes, in a lumped model, the closure of currents in the vicinity of the x-point region to encompass three current-closure mechanisms. We then use this boundary condition to derive the dispersion relation for low-beta flute-like modes in the divertor-leg region under the combined drives of curvature, sheath impedance, and divertor tilt effects. The results indicate the possibility of strongly growing instabilities, driven by sheath boundary conditions, and localized in either the private or common flux region of the divertor leg depending on the radial tilt of divertor plates. We re-visit the issue of x-point effects on blobs, examining the transition from blobs terminated by x-point shear to blobs that extend over both the main SOL and divertor legs. We find that, for a main-SOL blob, this transition occurs without a free-acceleration period as previously thought, with x-point termination conditions applying until the blob has expanded to reach the divertor plate. We also derive propagation speeds for divertor-leg blobs. Finally, we present fluid simulations of the C-Mod tokamak from the BOUT edge fluid turbulence code, which show main-SOL blob structures with similar spatial characteristics to those observed in the experiment, and also simulations which illustrate the possibility of fluctuations confined to divertor legs.
Date: January 9, 2007
Creator: Cohen, R H; LaBombard, B; LoDestro, L L; Rognlien, T D; Ryutov, D D; Terry, J L et al.
Partner: UNT Libraries Government Documents Department

Restriction of Receptor Movement Alters Cellular Response: Physical Force Sensing by EphA2

Description: Activation of the EphA2 receptor tyrosine kinase by ephrin-A1 ligands presented on apposed cell surfaces plays important roles in development and exhibits poorly understood functional alterations in cancer. We reconstituted this intermembrane signaling geometry between live EphA2-expressing human breast cancer cells and supported membranes displaying laterally mobile ephrin-A1. Receptor-ligand binding, clustering, and subsequent lateral transport within this junction were observed. EphA2 transport can be blocked by physical barriers nanofabricated onto the underlying substrate. This physical reorganization of EphA2 alters the cellular response to ephrin-A1, as observed by changes in cytoskeleton morphology and recruitment of a disintegrin and metalloprotease 10. Quantitative analysis of receptor-ligand spatial organization across a library of 26 mammary epithelial cell lines reveals characteristic differences that strongly correlate with invasion potential. These observations reveal a mechanism for spatio-mechanical regulation of EphA2 signaling pathways.
Date: September 9, 2009
Creator: Salaita, Khalid; Nair, Pradeep M; Petit, Rebecca S; Neve, Richard M; Das, Debopriya; Gray, Joe W et al.
Partner: UNT Libraries Government Documents Department

A 3-Dimensional discrete fracture network generator to examine fracture-matrix interaction using TOUGH2

Description: Water fluxes in unsaturated, fractured rock involve the physical processes occurring at fracture-matrix interfaces within fracture networks. Modeling these water fluxes using a discrete fracture network model is a complicated effort. Existing preprocessors for TOUGH2 are not suitable to generate grids for fracture networks with various orientations and inclinations. There are several 3-D discrete-fracture-network simulators for flow and transport, but most of them do not capture fracture-matrix interaction. We have developed a new 3-D discrete-fracture-network mesh generator, FRACMESH, to provide TOUGH2 with information about the fracture network configuration and fracture-matrix interactions. FRACMESH transforms a discrete fracture network into a 3 dimensional uniform mesh, in which fractures are considered as elements with unique rock material properties and connected to surrounding matrix elements. Using FRACMESH, individual fractures may have uniform or random aperture distributions to consider heterogeneity. Fracture element volumes and interfacial areas are calculated from fracture geometry within individual elements. By using FRACMESH and TOUGH2, fractures with various inclinations and orientations, and fracture-matrix interaction, can be incorporated. In this paper, results of flow and transport simulations in a fractured rock block utilizing FRACMESH are presented.
Date: April 9, 2003
Creator: Ito, Kazumasa & Yongkoo, Seol
Partner: UNT Libraries Government Documents Department

Status of MARS Code

Description: Status and recent developments of the MARS 14 Monte Carlo code system for simulation of hadronic and electromagnetic cascades in shielding, accelerator and detector components in the energy range from a fraction of an electronvolt up to 100 TeV are described. these include physics models both in strong and electromagnetic interaction sectors, variance reduction techniques, residual dose, geometry, tracking, histograming. MAD-MARS Beam Line Build and Graphical-User Interface.
Date: April 9, 2003
Creator: Mokhov, N.V.
Partner: UNT Libraries Government Documents Department

Implementation of a Two-Axis Servo-Hydraulic System for Full-Scale Fatigue Testing of Wind Turbine Blades

Description: Recently, the blade fatigue testing capabilities at NREL were upgraded from single-axis to two-axis loading. To implement this, several practical challenges were addressed, as hardware complexity increased dramatically with two actuators applying the loads at right angles to each other. A custom bellcrank was designed and implemented to minimize the load angle errors and to prevent actuator side loading. The control system was upgraded to accept load and displacement feedback from two actuators. The inherent long strokes uniquely associated with wind turbine blade-tests required substantial real-time corrections for both the control and data systems. A custom data acquisition and control system was developed using a National Instruments LabVIEW platform that interfaces with proprietary servo-hydraulic software developed by MTS Corporation. Before testing, the program is run under quasi-static (slow speed) conditions and iterates to determine the correct operational control parameters for the controller, taking into consideration geometry, test speed, and phase angle errors between the two actuators. Comparisons are made between single-axis and two-axis test loads using actual test load data and load uncertainties are qualitatively described. To date, two fatigue tests have been completed and another is currently ongoing using NREL's two-axis capability.
Date: September 9, 1999
Creator: Hughes, S. D.; Musial, W. D. & Stensland, T.
Partner: UNT Libraries Government Documents Department

Neutron Transport Methods for Accelerator-Driven Systems

Description: The objective of this project has been to develop computational methods that will enable more effective analysis of Accelerator Driven Systems (ADS). The work is centered at the University of Missouri at Rolla, with a subcontract at Northwestern University, and close cooperation with the Nuclear Engineering Division at Argonne National Laboratory. The work has fallen into three categories. First, the treatment of the source for neutrons originating from the spallation target which drives the neutronics calculations of the ADS. Second, the generalization of the nodal variational method to treat the R-Z geometry configurations frequently needed for scoping calculations in Accelerator Driven Systems. Third, the treatment of void regions within variational nodal methods as needed to treat the accelerator beam tube.
Date: February 9, 2005
Creator: Tsoulfanidis, Nicholas & Lewis, Elmer
Partner: UNT Libraries Government Documents Department

Optimization of Outer Poloidal Field (PF) Coil Configurations for Inductive PF Coil-only Plasma Start-up on Spherical Tori

Description: The elimination of in-board ohmic heating solenoid is required for the spherical torus (ST) to function as an attractive fusion power plant. An in-board ohmic solenoid, along with the shielding needed for its insulation, increases the size and, hence, the cost of the plant. Here, we investigate using static as well as dynamic codes in ST geometries a solenoid-free start-up concept utilizing a set of out-board poloidal field coils. By using the static code, an optimization of coil positions as well as coil currents was performed to demonstrate that it is indeed possible to create a high quality multi-pole field null region while retaining significant flux (volt-seconds) needed for the subsequent current ramp-up. With the dynamic code that includes the effect of vacuum vessel eddy currents, we then showed that it is possible to maintain a large size field null region for several milliseconds in which sufficient ionization avalanche can develop in the applied toroidal electric field. Under the magnetic geometry typical of a next generation spherical torus experiment, it is shown that the well-known plasma breakdown conditions for conventional ohmic solenoid start-up of E(sub)TB(sub)T/B(sub)P {approx} (0.1-1) kV/m with V(sub)loop {approx} 6 V can be readily met while retaining significant volt-seconds {approx} 4 V-S sufficient to generate multi-MA plasma current in STs.
Date: April 9, 2004
Creator: Choe, Wonho; Kim, Jayhyun & Ono, Masayuki
Partner: UNT Libraries Government Documents Department

Measured longitudinal beam impedance of a Tevatron separator

Description: Twenty two separators are currently installed in the Tevatron. The longitudinal impedance of one of these devices was recently measured with a stretched wire. The stretched wire technique can only measure impedance below the cutoff frequency (500MHz). The geometry of a separator is similar to an un-terminated stripline beam position detector. The separator plates occupy a 13.5'' ID vacuum tank, are 101'' long, 7.8'' wide, and have a 2'' gap between them. The differential characteristic impedance between the plates is estimated to be 81 {Gamma} and the common mode impedance plate to ground is about 42 {Gamma}.
Date: December 9, 2002
Creator: Crisp, James L & Fellenz, Brian J
Partner: UNT Libraries Government Documents Department

Kinetic Stability of the Field Reversed Configuration

Description: New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). The FRC is an innovative confinement approach that offers a unique fusion reactor potential because of its compact and simple geometry, translation properties, and high plasma beta. One of the most important issues is FRC stability with respect to low-n (toroidal mode number) MHD modes. There is a clear discrepancy between the predictions of standard MHD theory that many modes should be unstable on the MHD time scale, and the observed macroscopic resilience of FRCs in experiments.
Date: July 9, 2002
Creator: Belova, E.V.; Davidson, R.C.; Ji, H. & Yamada, and M.
Partner: UNT Libraries Government Documents Department

Reactor Physics Modeling of Spent Nuclear Research Reactor Fuel for Snm Attribution and Nuclear Forensics

Description: Nuclear research reactors are the least safeguarded type of reactor; in some cases this may be attributed to low risk and in most cases it is due to difficulty from dynamic operation. Research reactors vary greatly in size, fuel type, enrichment, power and burnup providing a significant challenge to any standardized safeguard system. If a whole fuel assembly was interdicted, based on geometry and other traditional forensics work, one could identify the material's origin fairly accurately. If the material has been dispersed or reprocessed, in-depth reactor physics models may be used to help with the identification. Should there be a need to attribute research reactor fuel material, the Savannah River National Laboratory would perform radiochemical analysis of samples of the material as well as other non-destructive measurements. In depth reactor physics modeling would then be performed to compare to these measured results in an attempt to associate the measured results with various reactor parameters. Several reactor physics codes are being used and considered for this purpose, including: MONTEBURNS/ORIGEN/MCNP5, CINDER/MCNPX and WIMS. In attempt to identify reactor characteristics, such as time since shutdown, burnup, or power, various isotopes are used. Complexities arise when the inherent assumptions embedded in different reactor physics codes handle the isotopes differently and may quantify them to different levels of accuracy. A technical approach to modeling spent research reactor fuel begins at the assembly level upon acquiring detailed information of the reactor to be modeled. A single assembly is run using periodic boundary conditions to simulate an infinite lattice which may be repeatedly burned to produce input fuel isotopic vectors of various burnups for a core level model. A core level model will then be constructed using the assembly level results as inputs for the specific fuel shuffling pattern in an attempt to establish an equilibrium cycle. ...
Date: June 9, 2010
Creator: Sternat, M.; Beals, D.; Webb, R. & Nichols, T.
Partner: UNT Libraries Government Documents Department

Status report of irradiated NPR fuel element rupture studies in the IRP

Description: The Irradiated Rupture Prototype (IRP) has been used for rupture testing irradiated NPR prototype fuel elements. Most of the tests have been made to determine the rupture effect of different reactor exposures, fuel element geometries and water cooldown rates following the start of the rupture. This report summarizes the results obtained to date, mentions where information is lacking and gives further tests scheduled for the IRP.
Date: September 9, 1963
Creator: Hayden, K.D.
Partner: UNT Libraries Government Documents Department