4 Matching Results

Search Results

Advanced search parameters have been applied.

Continuation application for the Amarillo National Resource Center for Plutonium, a higher education consortium consisting of Texas A and M University, Texas Tech University, and the University of Texas at Austin

Description: This report describes the 5 tasks to be covered under this project and compiles budget information. Task 1 is to establish a Plutonium Information Resource, which has been established in Amarillo, Texas. Task 2, Advisory Functions, coordinates studies and activities relating to the disposition of excess weapons-grade plutonium. Task 3, Environmental, Public Health, and Safety, supports soil remediation activities. Task 4, Education and Outreach, is supporting four programs: K--12 education improvement in science and math courses; Academic intervention to identify and encourage high ability high school and middle school students with potential to become scientists and engineers; Graduate education evaluation; and Public outreach programs. Task 5, Plutonium and other Materials Studies, is currently funding two projects for the disposition of high explosives: a feasibility study of burning a mixture of high explosives and other materials in a commercial coal-fired power plant and synthesis of diamond by shock compression of bucky ball with explosives.
Date: June 29, 1995
Partner: UNT Libraries Government Documents Department

Utilization of coal associated minerals. Quarterly report No. 11, April 1-June 30, 1980

Description: The purpose of this research program is to examine the effects of coal mineral materials on coal waste by-product utilization and to investigate new and improved methods for the utilization of waste by-products from cleaning, combustion and conversion processing of coal. The intermediate objectives include: (1) the examination of the effects of cleaning, gasification and combustion on coal mineral materials; and (2) the changes which occur in the coal wastes as a result of both form and distribution of mineral materials in feed coals in conjunction with the coal treatment effects resulting from coal cleaning or either gasification or combustion.
Date: August 29, 1980
Creator: Slonaker, J. F.; Akers, D. J. & Alderman, J. K.
Partner: UNT Libraries Government Documents Department

Recovery of flexible polyurethane foam from shredder residue.

Description: Argonne National Laboratory has developed a patented, continuous process for the recovery of flexible polyurethane foam (PUF) from auto shredder residue (ASR). To test the process, Argonne researchers conceived of, designed, and built a continuous foam washing and drying system that was pilot-tested at a shredder facility for six months. Economic analysis of the process, using manufacturers' quotes and operating data from Argonne's pilot plant, indicates a payback of less than two years for a plant producing about 1,000 ton/yr of foam. Samples of clean foam were shipped to three major foam reprocessors; all three indicated that the quality of the PUF recovered by the Argonne process met their requirements. Tests of the recovered foam by an independent testing laboratory showed that the recycled foam met the specifications for several automotive applications, including carpet padding, headliner, and sound-suppression support materials. Recovery of foam reduces the mass and the volume of material going to the landfill by about 5% and 30%, respectively. Annually, recovery will save about 1.2 x 10{sup 12} Btu of energy, cut the amount of solid waste being landfilled by about 150,000 tons, and eliminate the emission of about 250 tons of volatile organic compounds (VOCs) into the air.
Date: June 29, 1999
Creator: Daniels, E. J. & Jody, b. J.
Partner: UNT Libraries Government Documents Department

Bench scale testing of micronized magnetite beneficiation. Quarterly technical progress report 3, July--September, 1993

Description: This project is aimed at development of a process that, by using ultra fine magnetite suspension, would expand the application of heavy media separation technology to processing fine, {minus}28 mesh coals. These coal fines, produced during coal mining and crushing, are separated in the conventional coal preparation plant and generally impounded in a tailings pond. Development of an economic process for processing these fines into marketable product will expand the utilization of coal for power production in an environmentally acceptable and economically viable way. This process has been successfully researched at PETC but has not been studied on a continuous bench-scale unit, which is a necessary step towards commercial development of this promising technology. The goal of the program is to investigate the technology in a continuous circuit at a reasonable scale to provide a design basis for larger plants and a commercial feasibility data.
Date: October 29, 1993
Creator: Anast, K.
Partner: UNT Libraries Government Documents Department