235 Matching Results

Search Results

Advanced search parameters have been applied.

Concentration Ratios for Cesium and Strontium in Produce Near Los Alamos

Description: The ratios of the concentrations of radionuclides in produce (fruits, vegetables, and grains) to the concentrations in the soil have been measured for cesium and strontium at locations near Los Alamos. The Soil, Foodstuffs, and Biota Team of the Meteorology and Air Quality Group of the Los Alamos National Laboratory (LANL) obtained the data at locations within a radius of 50 miles of LANL. The concentration ratios are in good agreement with previous measurements: 0.01 to 0.06 for cesium-137 and 0.1 to 0.5 for strontium-90 (wet-weight basis).
Date: March 1, 2006
Creator: S. Salazar, M.McNaughton, P.R. Fresquez
Partner: UNT Libraries Government Documents Department

Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production

Description: This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.
Date: August 1, 2013
Creator: Leggett, Richard Wayne; Eckerman, Keith F & Manger, Ryan P
Partner: UNT Libraries Government Documents Department

Position Paper on Practicable Performance Criteria for the Removal Efficiency of Volatile Radionuclides

Description: As a result of fuel reprocessing, volatile radionuclides may be released from the facility stack if no processes are put in place to remove them. The radionuclides that are of concern in this document are 3H, 14C, 85Kr, and 129I. The question we attempted to answer is how efficient must this removal process be for each of these radionuclides? To answer this question, we examined the three regulations that may impact the degree to which these radionuclides must be reduced before process gases can be released from the facility. These regulations are 40 CFR 61 (EPA 2010a), 40 CFR 190(EPA 2010b), and 10 CFR 20 (NRC 2012). These regulations apply to the total radionuclide release and to a particular organ - the thyroid. Because these doses can be divided amongst all the radionuclides in different ways and even within the four radionuclides in question, we provided several cases. We first looked at the inventories for these radionuclides for three fuel types (PWR UOX, PWR MOX, and AHTGR), several burn-up values, and time out of reactor extending to 200 y. We calculated doses to the maximum exposed individual (MEI) with the EPA code CAP-88 (Rosnick 1992). Finally, we looked at two dose cases. Allocating all of the allowable dose to be used by the volatile radionuclides is one case, but, perhaps, unrealistic. In lieu of this, we arbitrarily selected a value of 10% of the allowable dose to be assigned to the volatile radionuclides. We calculated the required decontamination factors (DFs) for both of these cases, including the case for the thyroid dose for which 14C and 129I were the main contributors. With respect to 129I doses, we found that the highest dose was calculated with iodine as a fine particulate. The dose scaled as the fraction of the total 129I ...
Date: March 1, 2012
Creator: Jubin, R. T.; Soelberg, N. & Strachan, D. M.
Partner: UNT Libraries Government Documents Department

Assessment of the Building 3430 Filtered Exhaust Stack Sampling Probe Location

Description: Pacific Northwest National Laboratory performed a demonstration to determine the acceptable location in which to place an air sampling probe for emissions monitoring for radionuclides in the exhaust air discharge from the new 3430 Building Filtered Pathway Stack . The method was to adopt the results of a previously performed test series for a system of similar configuration, followed by a partial test on the actual system to verify the applicability of previously performed tests. The qualification criteria included 1) a uniform air velocity, 2) an average flow angle that does not deviate from the axis of the duct by more than 20°, 3) a uniform concentration of tracer gases, and 4) a uniform concentration of tracer particles. Section 1 provides background information for the demonstration, and Section 2 describes the test strategy, including the criteria for the applicability of model results and the test matrix. Section 3 describes the flow angle test and the velocity uniformity test, Section 4 provides the test results, and Section 5 provides the conclusions. Appendix A includes the test data sheets, and Appendix B gives applicable qualification results from the previously tested model stack. The data from the previously tested and similarly designed stack was demonstrated to be applicable to the current design for the 3430 Building Filtered Pathway stack. Therefore, this new system also meets the qualification criteria given in the ANSI/HPS N13.1 standard. Changes to the system configuration or operations outside of the bounds of this report (e.g., exhaust velocity increases, relocation of sample probe) will require retesting/reevaluation to determine compliance to the requirements.
Date: April 13, 2010
Creator: Glissmeyer, John A.
Partner: UNT Libraries Government Documents Department

Determination Of Reportable Radionuclides For DWPF Sludge Batch 7B (Macrobatch 9)

Description: The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. Twenty-seven radionuclides have been identified as reportable for DWPF SB7b. Each of these radionuclides has a half-life greater than ten years and contributes more than 0.01% of the radioactivity on a Curie basis at some point from production through the 1100 year period between 2015 and 3115. For SB7b, all of the radionuclides in the Design Basis glass are reportable except for three radionuclides: Pd-107, Cs-135, and Th-230. At no time during the 1100- year period between 2015 and 3115 did any of these three radionuclides contribute to more than 0.01% of the radioactivity on a Curie basis. The radionuclide measurements made for SB7b are the most extensive conducted to date. Some method development/refinement occurred during the conduct of these measurements, leading to lower detection limits and more accurate measurement of some isotopes than was previously possible.
Date: December 17, 2012
Creator: Crawford, C. L. & Diprete, D. P.
Partner: UNT Libraries Government Documents Department

Determination Of Reportable Radionuclides For DWPF Sludge Batch 7B (Macrobatch 9)

Description: The Waste Acceptance Product Specifications (WAPS) 1.2 require that “The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115”. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production through the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function ...
Date: August 22, 2013
Creator: Crawford, C. L. & DiPrete, D. P.
Partner: UNT Libraries Government Documents Department

Potential Application Of Radionuclide Scaling Factors To High Level Waste Characterization

Description: Production sources, radiological properties, relative solubilities in waste, and laboratory analysis techniques for the forty-five radionuclides identified in Hanford�s Waste Treatment and Immobilization Plant (WTP) Feed Acceptance Data Quality Objectives (DQO) document are addressed in this report. Based on Savannah River Site (SRS) experience and waste characteristics, thirteen of the radionuclides are judged to be candidates for potential scaling in High Level Waste (HLW) based on the concentrations of other radionuclides as determined through laboratory measurements. The thirteen radionuclides conducive to potential scaling are: Ni-59, Zr-93, Nb-93m, Cd-113m, Sn-121m, Sn-126, Cs-135, Sm-151, Ra-226, Ra-228, Ac-227, Pa-231, and Th-229. The ability to scale radionuclides is useful from two primary perspectives: 1) it provides a means of checking the radionuclide concentrations that have been determined by laboratory analysis; and 2) it provides a means of estimating radionuclide concentrations in the absence of a laboratory analysis technique or when a complex laboratory analysis technique fails. Along with the rationale for identifying and applying the potential scaling factors, this report also provides examples of using the scaling factors to estimate concentrations of radionuclides in current SRS waste and into the future. Also included in the report are examples of independent laboratory analysis techniques that can be used to check results of key radionuclide analyses. Effective utilization of radionuclide scaling factors requires understanding of the applicable production sources and the chemistry of the waste. As such, the potential scaling approaches identified in this report should be assessed from the perspective of the Hanford waste before reaching a decision regarding WTP applicability.
Date: September 30, 2013
Creator: Reboul, S. H.
Partner: UNT Libraries Government Documents Department

Inventory Data Package for Hanford Assessments

Description: This document presents the basis for a compilation of inventory for radioactive contaminants of interest by year for all potentially impactive waste sites on the Hanford Site for which inventory data exist in records or could be reasonably estimated. This document also includes discussions of the historical, current, and reasonably foreseeable (1944 to 2070) future radioactive waste and waste sites; the inventories of radionuclides that may have a potential for environmental impacts; a description of the method(s) for estimating inventories where records are inadequate; a description of the screening method(s) used to select those sites and contaminants that might make a substantial contribution to impacts; a listing of the remedial actions and their completion dates for waste sites; and tables showing the best estimate inventories available for Hanford assessments.
Date: June 1, 2006
Creator: Kincaid, Charles T.; Eslinger, Paul W.; Aaberg, Rosanne L.; Miley, Terri B.; Nelson, Iral C.; Strenge, Dennis L. et al.
Partner: UNT Libraries Government Documents Department

300 Area Process Trenches Groundwater Monitoring Plan

Description: This document is a proposed groundwater monitoring plan for the 300 Area process trenches to comply with RCRA final status, corrective action groundwater monitoring.
Date: August 13, 2001
Creator: Lindberg, Jonathan W. & Chou, Charissa J.
Partner: UNT Libraries Government Documents Department

Diffusion and Leaching Behavior of Radionuclides in Category 3 Waste Encasement Concrete and Soil Fill Material – Summary Report

Description: One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed, and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Some of the mobilization scenarios include (1) potential leaching of waste form before permanent closure cover is installed; (2) after the cover installation, long-term diffusion of radionuclides from concrete waste form into surrounding fill material; (3) diffusion of radionuclides from contaminated soils into adjoining concrete encasement and clean fill material. Additionally, the rate of diffusion of radionuclides may be affected by the formation of structural ...
Date: August 31, 2011
Creator: Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Clayton, Libby N.; Powers, Laura et al.
Partner: UNT Libraries Government Documents Department

Summary Report for the Development of Materials for Volatile Radionuclides

Description: The materials development summarized here is in support of the Waste Forms campaign, Volatile Radionuclide task. Specifically, materials are being developed for the removal and immobilization of iodine and krypton, specifically 129I and 85Kr. During FY 2010, aerogel materials were investigated for removal and immobilization of 129I. Two aerogel formulations were investigated, one based on silica aerogels and the second on chalcogenides. For 85Kr, metal organic framework (MOF) structures were investigated.
Date: November 22, 2010
Creator: Strachan, Denis M.; Chun, Jaehun; Henager, Charles H.; Matyas, Josef; Riley, Brian J.; Ryan, Joseph V. et al.
Partner: UNT Libraries Government Documents Department

Summary Report on the Volatile Radionuclide and Immobilization Research for FY2011 at PNNL

Description: The materials development summarized here is in support of the Waste Forms campaign, Volatile Radionuclide task. Specifically, materials are being developed for the removal and immobilization of iodine and krypton, specifically 129I and 85Kr. During FY 2011, aerogel materials were investigated for removal and immobilization of 129I. Two aerogel formulations were investigated, one based on silica aerogels and the second on chalcogen-based aerogels (i.e., chalcogels). A silica aerogel was tested at ORNL for total I2 sorption capacity. It was determined to have 48 mass% capacity while having little physisorbed I2 (I2 not taken up in the aerogel pores). For 85Kr, metal organic framework (MOF) structures were investigated and a new MOF with about 8 mass% capacity for Xe and Kr. The selectivity can be changed from Xe > Kr to Xe < Kr simply by lowering the temperature below 0 C. A patent disclosure has been filed. Lastly, silicon carbide (SiC) was loaded with Kr. The diffusion of Kr in SiC was found to be less than detectable at 500 C.
Date: September 1, 2011
Creator: Strachan, Denis M.; Chun, Jaehun; Matyas, Josef; Lepry, William C.; Riley, Brian J.; Ryan, Joseph V. et al.
Partner: UNT Libraries Government Documents Department

PCGAP: Users Guide and Algorithm Description

Description: PCGAP is a software package, which was written to provide gamma-ray pulse height spectrum analysis on a personal computer platform using the Windows NT operating system. It is a collection of programs, which provide a wide range of operability extending from the single user environment to the general purpose counting room. Included in the package are necessary data structures and libraries used to compute quantitative radionuclide concentrations. PCGAP also contains techniques to decontaminate photopeak interferences; determine activity concentrations for radionuclides independent of their associated spectral photopeak size; and three methods to determine the energy scale of a spectrum. PCGAP performs a non-linear least squares fitting of a Gaussian function to spectral photopeaks. The fitting algorithm can fit up to five concurrent photopeaks using a common spectral background. The package includes a program that will automatically locate spectral photopeaks, fit them to a Gaussian function, identify the radionuclides associated with the found photopeaks, and compute a net activity concentration, and for an 8K spectrum do it in less than 30 seconds on a reasonably configured PC. PCGAP also includes a program which allows the operator to manually (using mouse clicks) identify photopeak locations, fit limits and background positions, initiate a fit to the photopeaks and then display the resulting Gaussian function forms. This interactive display function is particularly useful to resolve or properly fit photopeaks with complex adjacent structure and for photopeaks that are near the limit of detection.
Date: June 1, 2000
Creator: Killian, Elmo Wayne
Partner: UNT Libraries Government Documents Department

RWMC Performance Assessment/Composite Analysis Monitoring Program Report - FY 2002

Description: US DOE Order 435.1, Radioactive Waste Management, Chapter IV and the associated implementation manual and guidance require monitoring of low-level radioactive waste (LLW) disposal facilities. The Performance Assessment/Composite Analysis (PA/CA) Monitoring program was developed and implemented to meet this requirement. This report represents the results of PA/CA monitoring projects that are available as of September 2002. The technical basis for the PA/CA program is provided in the PA/CA Monitoring Program document and a program description document (PDD) serves as the quality assurance project plan for implementing the PM program. Subsurface monitoring, air pathway surveillance, and subsidence monitoring/control are required to comply with DOE Order 435.1, Chapter IV. Subsidence monitoring/control and air pathway surveillance are performed entirely by other INEEL programs - their work is summarized herein. Subsurface monitoring includes near-field (source) monitoring of buried activated beryllium and steel, monitoring of groundwater in the vadose zone, and monitoring of the Snake River Plain Aquifer. Most of the required subsurface monitoring information presented in this report was gathered from the results of ongoing INEEL monitoring programs. This report also presents results for several new monitoring efforts that have been initiated to characterize any migration of radionuclides in surface sediment near the waste.
Date: September 1, 2002
Creator: Ritter, Paul David & Parsons, Alva Marie
Partner: UNT Libraries Government Documents Department

Surface Environmental Surveillance Procedures Manual, PNL-MA-580, Rev. 5

Description: This manual contains the procedures that are used for the collection of routine Surface Environmental Surveillance Project environmental samples and field measurements on and around the Hanford Site. Specific responsibilities for project personnel are also defined.
Date: July 1, 2007
Creator: Hanf, Robert W.; Poston, Ted M. & Bisping, Lynn E.
Partner: UNT Libraries Government Documents Department

Processes for Removal and Immobilization of 14C, 129I, and 85Kr

Description: This is a white paper covering the results of a literature search and preliminary experiments on materials and methods to remove and immobilize gaseous radionuclided that come from the reprocessing of spent nuclear fuel.
Date: October 5, 2009
Creator: Strachan, Denis M.; Bryan, Samuel A.; Henager, Charles H.; Levitskaia, Tatiana G.; Matyas, Josef; Thallapally, Praveen K. et al.
Partner: UNT Libraries Government Documents Department

THOR Bench-Scale Steam Reforming Demonstration

Description: The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.
Date: May 1, 2003
Creator: Marshall, D. W.; Soelberg, N. R. & Shaber, K. M.
Partner: UNT Libraries Government Documents Department

TWR Bench-Scale Steam Reforming Demonstration

Description: The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.
Date: May 1, 2003
Creator: Marshall, D. W. & Soelberg, N. R.
Partner: UNT Libraries Government Documents Department

Status Update for Implementing Best Available Technology per DOE Order 5400.5 - September 2002

Description: This report identifies discharges of liquid waste streams that require documentation of the Best Available Technology selection process at Bechtel BWXT Idaho, LLC, operated facilities at the Idaho National Engineering and Environmental Laboratory. The Best Available Technology selection process is conducted according to Department of Energy Order 5400.5, Chapter II (3),“Management and Control of Radioactive Materials in Liquid Discharges and Phaseout of Soil Columns” and Department of Energy guidance. Only those liquid waste streams and facilities requiring the Best Available Technology selection process are evaluated in further detail. In addition, this report will be submitted to the Department of Energy Idaho Operations Office Field Office manager for approval according to DOE Order 5400.5, Chapter II, Section 3.b.(1). Two facilities (Idaho Nuclear Technology and Engineering Center existing Percolation Ponds and Test Area North/Technical Support Facility Disposal Pond) at the Idaho National Engineering and Environmental Laboratory required documentation of the Best Available Technology selection process (Section 4). These two facilities required documentation of the Best Available Technology selection process because they discharge wastewater that may contain process-derived radionuclides to a soil column even though the average radioactivity levels are typically below drinking water maximum contaminant levels. At the request of the Department of Energy Idaho Operations Office, the 73.5-acre Central Facilities Area Sewage Treatment Plant land application site is included in Section 4 of this report to ensure the requirements of DOE Order 5400.5, Chapter II, Section 3 are met. The Central Facilities Area Sewage Treatment Plant effluent contains process-derived radionuclides from radioactive tracers used in certain analytical procedures. The radioactivity levels of these radionuclides are below maximum contaminant levels. According to Department of Energy guidance, “If the liquid waste stream is below maximum contaminant levels, then the goals of the Best Available Technology selection process are being met and the liquid ...
Date: September 1, 2002
Creator: Lewis, Michael George
Partner: UNT Libraries Government Documents Department

Addendum to the Calcined Waste Storage at the Idaho Nuclear Technology Center

Description: This report is an addendum to the report Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center, INEEL/EXT-98-00455 Rev. 1, June 2003. The original report provided a summary description of the Calcined Solids Storage Facilities (CSSFs). It also contained dozens of pages of detailed data tables documenting the volume and composition (chemical content and radionuclide activity) of the calcine stored in the CSSFs and the liquid waste from which the calcine was derived. This addendum report compiles the calcine composition data from the original report. It presents the compiled data in a graphical format with units (weight percent, curies per cubic meter, and nanocuries per gram) that are commonly used in regulatory and waste acceptance criteria documents. The compiled data are easier to use and understand when comparing the composition of the calcine with potential regulatory or waste acceptance criteria. This addendum report also provides detailed explanations for the large variability in the calcine composition among the CSSFs. The calcine composition varies as a result of reprocessing different types of fuel that had different cladding materials. Different chemicals were used to dissolve the various types of fuel, extract the uranium, and calcine the resulting waste. This resulted in calcine with variable compositions. This addendum report also identifies a few trace chemicals and radionuclides for which the accuracy of the amounts estimated to be in the calcine could be improved by making adjustments to the assumptions and methods used in making the estimates.
Date: May 1, 2004
Creator: Staiger, M. D.; Swenson, Michael & Thomas, T. R.
Partner: UNT Libraries Government Documents Department

Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

Description: Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and other contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in the subsurface; a primary concern of the DOE Environmental Remediation Science Division (ERSD) and Subsurface Geochemical Research (SBR) Program.
Date: January 29, 2014
Creator: Gerlach, Robin; Peyton, Brent M. & Apel, William A.
Partner: UNT Libraries Government Documents Department

Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

Description: The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first receipt of waste in March 1999 through the end of 2008, 57,873 m3 ...
Date: September 21, 2009
Creator: Services, Washington Regulatory and Enviromnetal
Partner: UNT Libraries Government Documents Department

New Catalytic DNA Biosensors for Radionuclides and Metal ion

Description: We aim to develop new DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides, such as uranium, technetium, and plutonium, and metal contaminants, such as lead, chromium, and mercury. The sensors will be highly sensitive and selective. They will be applied to on-site, real-time assessment of concentration, speciation, and stability of the individual contaminants before and during bioremediation, and for long-term monitoring of DOE contaminated sites. To achieve this goal, we have employed a combinatorial method called “in vitro selection” to search from a large DNA library (~ 1015 different molecules) for catalytic DNA molecules that are highly specific for radionuclides or other metal ions through intricate 3-dimensional interactions as in metalloproteins. Comprehensive biochemical and biophysical studies have been performed on the selected DNA molecules. The findings from these studies have helped to elucidate fundamental principles for designing effective sensors for radionuclides and metal ions. Based on the study, the DNA have been converted to fluorescent or colorimetric sensors by attaching to it fluorescent donor/acceptor pairs or gold nanoparticles, with 11 part-per-trillion detection limit (for uranium) and over million fold selectivity (over other radionuclides and metal ions tested). Practical application of the biosensors for samples from the Environmental Remediation Sciences Program (ERSP) Field Research Center (FRC) at Oak Ridge has also been demonstrated.
Date: March 1, 2008
Creator: Lu, Yi
Partner: UNT Libraries Government Documents Department