32 Matching Results

Search Results

FY2007 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

Description: The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the ...
Date: October 1, 2007
Creator: Olszewski, Mitchell
Partner: UNT Libraries Government Documents Department

Funding Levels for Conservation Programs in the 2007 Farm Bill

Description: This report consists of two tables, preceded by a brief narrative. The first table summarizes the annual funding provisions, by program, in (1) current law, (2) H.R. 2419 as passed, and (3) the Bush Administration's farm bill proposals. The second table compares FY2007 authorized and actual funding levels for programs authorized in the 2002 farm bill with FY2008 and FY2012 funding levels that would be authorized in the 2007 House-passed farm bill.
Date: October 15, 2007
Creator: Zinn, Jeffrey
Partner: UNT Libraries Government Documents Department

Water Quality Issues in the 110th Congress: Oversight and Implementation

Description: This report discusses issues surrounding the Clean Water Act (CWA) of 1972 and programs set up to meet the water quality standards that it outlined. The report focuses specifically on the legislative issues for the 110th Congress in relation to the CWA. It also includes a brief comparison of the expected appropriations for FY2007 and FY2008.
Date: March 15, 2007
Creator: Copeland, Claudia
Partner: UNT Libraries Government Documents Department

Funding Levels for Conservation Programs in the 2007 Farm Bill

Description: This report consists of two tables, preceded by a brief narrative. The first table summarizes the annual funding provisions, by program, in (1) current law, (2) H.R. 2419 as passed, and (3) the Bush Administration's farm bill proposals. The second table compares FY2007 authorized and actual funding levels for programs authorized in the 2002 farm bill with FY2008 and FY2012 funding levels that would be authorized in the 2007 House-passed farm bill.
Date: October 4, 2007
Creator: Zinn, Jeffrey
Partner: UNT Libraries Government Documents Department

Environmental Protection Agency: FY2007 Appropriations Highlights

Description: This report presents a table detailing EPA appropriations for FY2006 and FY2007. Among individual activities, both the full House and the Senate Appropriations Committee approved decreases and increases throughout EPA's eight appropriations accounts in their respective versions of H.R. 5386, when compared with the President's FY2007 request and the FY2006 appropriation.
Date: January 3, 2007
Creator: Bearden, David M. & Esworthy, Robert
Partner: UNT Libraries Government Documents Department

Fault Geomechanics and Carbon Dioxide Leakage Applied to Geological Storage: FY07 Quarterly and Summary Reports

Description: Safe and permanent storage of carbon dioxide in geologic reservoirs is critical to geologic sequestration. The objective of this study is to quantify the conditions under which a general (simulated) fault network and a specific (field case) fault network will fail and leak carbon dioxide out of a reservoir. Faults present a potential fast-path for CO{sub 2} leakage from reservoirs to the surface. They also represent potential induced seismicity hazards. It is important to have improved quantitative understandings of the processes that trigger activity on faults and the risks they present. Fortunately, the conditions under which leakage along faults is induced can be predicted and quantified given the fault geometry, reservoir pressure, an in-situ stress tensor. We proposed to expand the current capabilities of fault threshold characterization and apply that capability to a site where is CO{sub 2} injection is active or planned. Specifically, we proposed to use a combination of discrete/explicit and continuum/implicit codes to provide constrain the conditions of fault failure. After minor enhancements of LLNL's existing codes (e.g., LDEC), we would create a 3D synthetic model of a common configuration (e.g., a faulted dome). During these steps, we will identify a field site where the necessary information is available and where the operators are willing to share the necessary information. We would then execute an analysis specific to the field case. The primary products by quarter are: 1Q--Identification of likely field case; 2Q--Functioning prototype fault model; 3Q--Execution of fault-slip/migration calculation for synthetic case; and 4Q--Begin simulation of fault-slip/migration calculation for field system. It is worth noting that due to the continuing resolution, we did not receive any funds until 3Q, and did not receive >65% of the support until 4Q. That said, we were still able to meet all of our milestones for FY07 on time and ...
Date: November 2, 2007
Creator: Friedmann, S. J. & Morris, J.
Partner: UNT Libraries Government Documents Department

FY07 Final Report for Calibration Systems

Description: Remote infrared (IR) sensing provides a valuable method for detection and identification of materials associated with nuclear proliferation. Current challenges for remote sensors include minimizing the size, mass, and power requirements for cheaper, smaller, and more deployable instruments without affecting the measurement performance. One area that is often overlooked is sensor calibration design that is optimized to minimize the cost, size, weight, and power of the payload. Yet, an on-board calibration system is essential to account for changes in the detector response once the instrument has been removed from the laboratory. The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact quantum cascade (QC) laser-based calibration systems for infrared sensor systems in order to provide both a spectral and radiometric calibration while minimizing the impact on the instrument payload. In FY05, PNNL demonstrated a multi-level radiance scheme that provides six radiance levels for an enhanced linearity check compared to the currently accepted two-point scheme. PNNL began testing the repeatability of this scheme using a cryogenically cooled, single-mode quantum cascade laser (QCL). A cyclic variation in the power was observed that was attributed to the thermal cycling of the laser's dewar. In FY06, PNNL continued testing this scheme and installed an auxiliary liquid nitrogen reservoir to limit the thermal cycling effects. Although better repeatability was achieved over a longer time period, power fluctuations were still observed due to the thermal cycling. Due to the limitations with the cryogenic system, PNNL began testing Fabry-Perot QCLs that operate continuous-wave (cw) or quasi-cw at room temperature (RT) in FY06. PNNL demonstrated a multi-level scheme that provides five radiance levels in 105 seconds with excellent repeatability. We have continued testing this repeatability in FY07. A burn-in effect appears in which the power increases over a certain time period. ...
Date: December 1, 2007
Creator: Myers, Tanya L.; Broocks, Bryan T.; Cannon, Bret D. & Ho, Nicolas
Partner: UNT Libraries Government Documents Department

Facilitation of the Estuary/Ocean Subgroup for Research, Monitoring, and Evaluation, FY07 Annual Report

Description: This annual report is a deliverable for fiscal year 2007 (FY07) for Project 2002-077-00, Facilitation of the Estuary/Ocean Subgroup (EOS). The EOS is part of the research, monitoring, and evaluation (RME) effort the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) developed in response to responsibilities arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The goal of the EOS project is to facilitate activities of the estuary/ocean RME subgroup as it coordinates design and implementation of federal RME in the lower Columbia River and estuary. In FY07, EOS project accomplishments included 1) subgroup meetings; 2) participation in the estuary work group of the Pacific Northwest Aquatic Monitoring Partnership; 3) project management via the project tracking system, PISCES; 4) quarterly project status reports; and 5) a major revision to the Estuary RME Plan (new version September 2007) based on comments by EOS members and invited reviewers.
Date: October 10, 2007
Creator: Johnson, Gary E. & Diefenderfer, Heida L.
Partner: UNT Libraries Government Documents Department

Biosecurity Techbase FY07 Final Report

Description: This tech base award has close links with the Viral Identification Characterization Initiative (VICI) ER LDRD. The tech base extends developed code to enable a capability for biodefense, biosurveillance, and clinical diagnostics. The code enables the design of signatures to detect and discover viruses, without relying on prior assumptions as to the species of virus present. This approach for primer and signature design contrasts with more traditional PCR approaches, in which a major weakness is the unlikelihood of viral discovery or detection of unanticipated species. There were three crucial areas of the project that were not research and development, so could not be funded under the ER LDRD, but were a reduction to practice of the existing VICI algorithm that were necessary for the success of overall computational project goals. These areas, funded by the 2007 Tech Base award, were: (1) improvement of the code developed under the VICI LDRD by incorporating T{sub m} and free energy predictions using Unafold; (2) porting of code developed on the kpath Sun Solaris cluster to the Yana and Zeus LC machines; and (3) application of that code to perform large numbers of simulations to determine parameter effects.
Date: October 22, 2007
Creator: Gardner, S N & Williams, P L
Partner: UNT Libraries Government Documents Department

FY2007 NREL Energy Storage R&D Progress Report

Description: The National Renewable Energy Laboratory is engaged in research and development activities to support achieving targets and objectives set by the Energy Storage Program at the Office of FreedomCAR and Vehicle Technology in the U.S. Department of Energy. These activities include: 1. supporting the Battery Technology Development Program with battery thermal characterization and modeling and with energy storage system simulations and analysis; 2. supporting the Applied Research Program by developing thermal models to address abuse of Li-Ion batteries; and 3. supporting the Focused Long-Term Research Program by investigating improved Li-Ion battery electrode materials. This report summarizes the results of NREL energy storage activities in FY07.
Date: November 1, 2007
Creator: Pesaran, A.
Partner: UNT Libraries Government Documents Department

Certification of Completion of Item 2 of ASC FY07 Level-2 Milestone ID #2380

Description: This report documents the completion of Item 2 of the three milestone deliverables that comprise Milestone ID 2380: Deploy selected Tri-Lab resource manager at LLNL and develop support model. Specifically: LLNL will integrate and support a commercial resource manager software product at LLNL to be used across the tri-lab HPC facilities.
Date: March 28, 2007
Creator: Lipari, D A
Partner: UNT Libraries Government Documents Department

Annual Hanford Seismic Report for Fiscal Year 2007

Description: This annual report documents the locations, magnitudes, and geologic interpretations of earthquakes recorded for the Hanford monitoring region of south-central Washington in fiscal year 2007 (October 2006 through September 2007). The report provides summaries of seismic events recorded during the first three quarters of fiscal year 2007 and contains a more comprehensive discussion of seismic events for the fourth quarter of the fiscal year.
Date: December 27, 2007
Creator: Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E. & Devary, Joseph L.
Partner: UNT Libraries Government Documents Department

Laser Remote Sensing: FY07 Summary Report

Description: Standoff detection and characterization of chemical plumes using Frequency Modulated Differential Absorption Lidar (FM-DIAL) is a promising technique for the detection of nuclear proliferation activities. For the last several years Pacific Northwest National Laboratory (PNNL) has been developing an FM-DIAL based remote sensing system as part of PNNL's Infrared Sensors project within NA-22's Enabling Technologies portfolio. In FY06 the remote sensing effort became a stand-alone project within the Plutonium Production portfolio with the primary goal of transitioning technology from the laboratory to the user community. Current systems remotely detect trace chemicals in the atmosphere over path lengths of hundreds of meters for monostatic operation (without a retro-reflector target) and up to ten kilometers for bistatic operation (with a retro-reflector target). The FM-DIAL sensor is sensitive and highly selective for chemicals with narrow-band absorption features on the order of 1-2 cm-1; as a result, the FM-DIAL sensors are best suited to simple di-atomic or tri-atomic molecules and other molecules with unusually narrow absorption features. A broadband sensor is currently being developed. It is designed to detect chemicals with spectral features on the order of several 10s of wavenumbers wide. This will expand the applicability of this technology to the detection of more complicated molecules. Our efforts in FY07 focused on the detection of chemicals associated with the PUREX process. The highest value performance measure for FY07, namely the demonstration of the Broadband Laser Spectrometer (BLS) during chemical release experiments, was successfully achieved in June, July and August of this year. Significant advancements have been made with each of the other tasks as well. A short-wave infrared version of the miniature FM-DIAL (FM-Mini) instrument was successfully demonstrated during field tests in June. During FY07 another version of the FM-Mini was built using long-wave infrared components. This instrument was deployed for field tests ...
Date: September 30, 2007
Creator: Harper, Warren W.; Strasburg, Jana D.; Golovich, Elizabeth C.; Thompson, Jason S.; Stewart, Timothy L.; Batdorf, Michael T. et al.
Partner: UNT Libraries Government Documents Department

SYNTHESIS OF METAL HYDRIDES BY MECHANICAL ALLOYING IN AN ATTRITOR MILL: FY07 STATUS REPORT

Description: The objective of this task was to demonstrate that metal hydrides could be produced by mechanical alloying in the quantities needed to support the tritium production facilities at the Savannah River Site. The objective for the FY07 portion of this task was to demonstrate the production of Zr-Fe getter materials by mechanical alloying and begin to optimize the milling parameters. Three starting compositions (ratios of elemental Zr and Fe powders) were selected and attritor milled under argon for times of 8 to 60 hours. Hexane and liquid nitrogen were used as process control agents. In general, milling times of at least 24 hours were required to form the desired Zr{sub 2}Fe and Zr{sub 3}Fe phases, although a considerable amount of unalloyed Zr and Fe remained. Milling in liquid nitrogen does not appear to provide any advantages over milling in hexane, particularly due to the formation of ZrN after longer milling times. Carbides of Zr formed during some of the milling experiments in hexane. Formation of carbides during milling appears to be much less of an issue than formation of nitrides, although some of the phases that were not able to be identified in the XRD results may also be carbides. Additional XRD experiments should be designed to improve signal to noise ratio (i.e., longer count times) and use a wider scan range to better identify phases that were not clear in the original data. Elemental Zr was present in the as-milled material but not detected after annealing for milling times of 48 and 60 hours. It may be that after intimate mixing of the powders in the attritor mill the annealing temperature was sufficient to allow for the formation of a Zr-Fe alloy. The phase diagram for the binary Zr-Fe system agrees with this proposition. If this is the case, ...
Date: November 8, 2007
Creator: Fox, K
Partner: UNT Libraries Government Documents Department

Advanced Fuel Cycle Initiative AFC-1D, AFC-1G, and AFC-1H End of FY-07 Irradiation Report

Description: The purpose of the U.S. Advanced Fuel Cycle Initiative (AFCI), now within the broader context of the Global Nuclear Energy Partnership (GNEP), is to develop and demonstrate the technologies needed to transmute the long-lived transuranic isotopes contained in spent nuclear fuel into shorter-lived fission products. Success in this undertaking could potentially dramatically decrease the volume of material requiring disposal with attendant reductions in long-term radio-toxicity and heat load of high-level waste sent to a geologic repository. One important component of the technology development is investigation of irradiation/transmutation effects on actinide-bearing metallic fuel forms containing plutonium, neptunium, americium (and possibly curium) isotopes. Goals of this initiative include addressing the limited irradiation performance data available on metallic fuels with high concentrations of Pu, Np and Am, as are envisioned for use as actinide transmutation fuels. The AFC-1 irradiation experiments of transmutation fuels are expected to provide irradiation performance data on non-fertile and low-fertile fuel forms specifically, irradiation growth and swelling, helium production, fission gas release, fission product and fuel constituent migration, fuel phase equilibria, and fuel-cladding chemical interaction. Contained in this report are the to-date physics evaluations performed on three of the AFC-1 experiments; AFC-1D, AFC-1G and AFC-1H. The AFC-1D irradiation experiment consists of metallic non-fertile fuel compositions with minor actinides for potential use in accelerator driven systems and AFC-1G and AFC-1H irradiation experiments are part of the fast neutron reactor fuel development effort. The metallic fuel experiments and nitride experiment are high burnup analogs to previously irradiated experiments and are to be irradiated to = 40 at.% burnup.
Date: September 1, 2007
Creator: Utterbeck, Debra J.; Chang, Gray S. & Lillo, Misit A.
Partner: UNT Libraries Government Documents Department

FY07 Summary of System Interface and Support Systems R&D and Technical Issues Map

Description: This document provides a summary of research and development activities in the System Interface and Support Systems area of the DOE Nuclear Hydrogen Initiative in FY 2007. Project cost and performance data obtained from the PICS system, at least up through July 2007, are presented and analyzed. Brief summaries of accomplishments and references are provided. A mapping of System Interface and Support Systems technical issues versus the work performed is updated and presented. Lastly, near-term research plans are described, and recommendatioins are provided for additional research.
Date: September 1, 2007
Creator: Sherman, Steven R.
Partner: UNT Libraries Government Documents Department

Technical Issues Map for the NHI System Interface and Support Systems Area: 2nd Quarter FY07

Description: This document provides a mapping of technical issues associated with development of the Next Generation Nuclear Plant (NGNP) intermediate heat transport loop and nuclear hydrogen plant support systems to the work that has been accomplished or is currently underway in the 2nd quarter of FY07.
Date: March 1, 2007
Creator: Sherman, Steven R.
Partner: UNT Libraries Government Documents Department

Technical Issues Map for the NHI System Interface and Support Systems Area: 3rd Quarter FY 07

Description: This document provides a mapping of technical issues associated with development of the Next Generation Nuclear Plant (NGNP) intermediate heat transport loop and nuclear hydrogen plant support systems to the work that has been accomplished or is currently underway. The technical issues are ranked according to priority and by assumed resolution dates. Due to funding limitations, not all high-priority technical issues are under study at the present time, and more resources will need to be dedicated to tackling such issues in the future. This technical issues map is useful for understanding the relative importance of various technical challenges and will be used as a planning tool by the NHI technical leadership for future work package planning. The technical map in its present form will be discontinued in FY08 and will be folded into a larger NHI System Interface and Support Systems project management plan and scope baseline statement in FY08.
Date: June 1, 2007
Creator: Sherman, Steven R.
Partner: UNT Libraries Government Documents Department

HyPEP-FY 07 Annual Report: A Hydrogen Production Plant Efficiency Calculation Program

Description: The Very High Temperature Gas-Cooled Reactor (VHTR) coupled to the High Temperature Steam Electrolysis (HTSE) process is one of two reference integrated systems being investigated by the U.S. Department of Energy and Idaho National Laboratory for the production of hydrogen. In this concept the VHTR outlet temperature of 900 °C provides thermal energy and high efficiency electricity for the electrolysis of steam in the HTSE process. In the second reference system the Sulfur Iodine (SI) process is coupled to the VHTR to produce hydrogen thermochemically. In the HyPEP project we are investigating and characterizing these two reference systems with respect to production, operability, and safety performance criteria. Under production, plant configuration and working fluids are being studied for their effect on efficiency. Under operability, control strategies are being developed with the goal of maintaining equipment within operating limits while meeting changes in demand. Safety studies are to investigate plant response for equipment failures. Specific objectives in FY07 were (1) to develop HyPEP Beta and verification and validation (V&V) plan, (2) to perform steady state system integration, (3) to perform parametric studies with various working fluids and power conversion unit (PCU) configurations, (4) the study of design options such as pressure, temperature, etc. (5) to develop a control strategy and (6) to perform transient analyses for plant upsets, control strategy, etc for hydrogen plant with PCU. This report describes the progress made in FY07 in each of the above areas. (1) The HyPEP code numeric scheme and Graphic User Interface have been tested and refined since the release of the alpha version a year ago. (2) The optimal size and design condition for the intermediate heat exchanger, one of the most important components for integration of the VHTR and HTSE plants, was estimated. (3) Efficiency calculations were performed for a variety ...
Date: September 1, 2007
Creator: Oh, Chang
Partner: UNT Libraries Government Documents Department

HyPEP FY-07 Report: Initial Calculations of Component Sizes, Quasi-Static, and Dynamics Analyses

Description: The Very High Temperature Gas-Cooled Reactor (VHTR) coupled to the High Temperature Steam Electrolysis (HTSE) process is one of two reference integrated systems being investigated by the U.S. Department of Energy and Idaho National Laboratory for the production of hydrogen. In this concept a VHTR outlet temperature of 900 °C provides thermal energy and high efficiency electricity for the electrolysis of steam in the HTSE process. In the second reference system the Sulfur Iodine (SI) process is coupled to the VHTR to produce hydrogen thermochemically. This report describes component sizing studies and control system strategies for achieving plant production and operability goals for these two reference systems. The optimal size and design condition for the intermediate heat exchanger, one of the most important components for integration of the VHTR and HTSE plants, was estimated using an analytic model. A partial load schedule and control system was designed for the integrated plant using a quasi-static simulation. Reactor stability for temperature perturbations in the hydrogen plant was investigated using both a simple analytic method and a dynamic simulation. Potential efficiency improvements over the VHTR/HTSE plant were investigated for an alternative design that directly couples a High Temperature Steam Rankin Cycle (HTRC) to the HTSE process. This work was done using the HYSYS code and results for the HTRC/HTSE system were compared to the VHTR/HTSE system. Integration of the VHTR with SI process plants was begun. Using the ASPEN plus code the efficiency was estimated. Finally, this report describes planning for the validation and verification of the HYPEP code.
Date: July 1, 2007
Creator: Oh, Chang
Partner: UNT Libraries Government Documents Department

HyPEP FY-07 Report: System Integration Model Development

Description: The integrated system of a Very High Temperature Gas-Cooled Reactor (VHTR) and a High Temperature Steam Electrolysis (HTSE) process is one of systems being investigated by the U.S. Department of Energy and Idaho National Laboratory. This system will produce hydrogen by utilizing a highly efficient VHTR with an outlet temperature of 900 °C and supplying necessary energy and electricity to the HTSE process for electrolysis of high temperature steam. This report includes a description of five configurations including an indirect parallel cycle, an indirect serial cycle, a direct serial cycle, a steam combined cycle, and a reheat cycle. HYSYS simulations were performed for each of these configurations coupled to a HTSE process. Final results are presented along with parametric studies and process optimization.
Date: April 1, 2007
Creator: Oh, C. H.; Kim, E. S.; Sherman, S. R. & Vilim, R.
Partner: UNT Libraries Government Documents Department

Documentation of Short Stack and Button Cell Experiments Performed at INL and Ceramatec during FY07

Description: This report provides documentation of experimental research activities performed at the Idaho National Laboratory and at Ceramatec, Inc. during FY07 under the DOE Nuclear Hydrogen Initiative, High Temperature Electrolysis Program. The activities discussed in this report include tests on single (button) cells, short planar stacks and tubular cells. The objectives of these small-scale tests are to evaluate advanced electrode, electrolyte, and interconnect materials, alternate modes of operation (e.g., coelectrolysis), and alternate cell geometries over a broad range of operating conditions, with the aim of identifying the most promising material et, cell and stack geometry, and operating conditions for the high-temperature electrolysis application. Cell performance is characterized in erms of initial area-specific resistance and long-term stability in the electrolysis mode. Some of the tests were run in the coelectrolysis mode. Research into coelectrolysis was funded by Laboratory Directed Research and Development (LDRD). Coelectrolysis simultaneously converts steam to hydrogen and carbon dioxide to carbon monoxide. This process is complicated by the reverse shift reaction. An equilibrium model was developed to predict outlet compositions of steam, hydrogen, carbon dioxide, and carbon monoxide resulting from coelectrolysis. Predicted ompositions were compared to measurements obtained with a precision micro-channel gas chromatograph.
Date: September 1, 2007
Creator: O'Brien, J. E.; Stoots, C. M.; Hartvigsen, J. J. & Herring, J. S.
Partner: UNT Libraries Government Documents Department

Financial Report of the University of North Texas System Administration: For the year ended August 31, 2007

Description: Financial report for the University of North Texas System Administration contains information about revenues and expenditures for the organization during the 2006-2007 fiscal year. It includes general statements, schedules of accounts broken down by category, and other supplementary notes.
Date: November 2007
Creator: University of North Texas System. Administration.
Partner: UNT Libraries Special Collections