342 Matching Results

Search Results

Advanced search parameters have been applied.

SPECIES DETERMINATION OF ORGANOMETALLIC COMPOUNDS USING ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY WITH LIQUID CHROMATOGRAPHY

Description: Over the past several years we have devised and expanded the capabilities of Zeeman atomic absorption spectroscopy (ZAA). Using this technique, trace elements in a complex matrix can be directly analyzed with high accuracy even when there is only one atom of interest contained in several million atoms of the host material. Quantities in the nanogram, or in some cases picogram, range can be determined within IS seconds for more than 30 elements. Because of its high selectivity and high sensitivity, ZAA can be used as a new technique for organometallic species determination by interfacing with a high pressure liquid chromatograph (HPLC). The HPLC separates various molecular species. Different kinds of mobil solvents can be directly introduced in the ZAA detection system; even organic solvents or high concentration salt solutions. Then, organometallic species in the ppb range are separately detected according to their retention times. This technique has a much larger field of application than HPLC coupled with conventional AA. The advantages of the ZAA technique are described in a recent publication. In this case, a steady magnetic field at 11 kgauss is applied to the sample vapor perpendicular to the incident light beam. The difference in absorption of the polarized constituents P{perpendicular} and P{parallel} is proportional to the atomic density, but is not affected by the various kind of spectral interferences caused by thermal decomposition of the eluants. The recently developed HPLC technique has many advantages over gas chromatography. Nonvolatile, polar, thermally unstable molecules or high molecular weight compounds can be separated. In the present system, the main requirement is that the solute be soluble in the mobile solvent. A demonstration of the operation of this system is provided by the analysis of a mixture of vitamin B12 and Co(No{sub 3}){sub 2}. As shown in Figure 1, vitamin B12 ...
Date: January 1, 1978
Creator: Koizumi, H.; Hadeishi, T. & McLaughlin, R.
Partner: UNT Libraries Government Documents Department

Structural and electrochemical Investigation of Li(Ni0.4Co0.2-yAlyMn0.4)O2 Cathode Material

Description: Li(Ni{sub 0.4}Co{sub 0.15}Al{sub 0.05}Mn{sub 0.4})O{sub 2} was investigated to understand the effect of replacement of the cobalt by aluminum on the structural and electrochemical properties. In situ X-ray absorption spectroscopy (XAS) was performed, utilizing a novel in situ electrochemical cell, specifically designed for long-term X-ray experiments. The cell was cycled at a moderate rate through a typical Li-ion battery operating voltage range. (1.0-4.7 V) XAS measurements were performed at different states of charge (SOC) during cycling, at the Ni, Co, and the Mn edges, revealing details about the response of the cathode to Li insertion and extraction processes. The extended X-ray absorption fine structure (EXAFS) region of the spectra revealed the changes of bond distance and coordination number of Ni, Co, and Mn absorbers as a function of the SOC of the material. The oxidation states of the transition metals in the system are Ni{sup 2+}, Co{sup 3+}, and Mn{sup 4+} in the as-made material (fully discharged), while during charging the Ni{sup 2+} is oxidized to Ni{sup 4+} through an intermediate stage of Ni{sup 3+}, Co{sup 3+} is oxidized toward Co{sup 4+}, and Mn was found to be electrochemically inactive and remained as Mn{sup 4+}. The EXAFS results during cycling show that the Ni-O changes the most, followed by Co-O, and Mn-O varies the least. These measurements on this cathode material confirmed that the material retains its symmetry and good structural short-range order leading to the superior cycling reported earlier.
Date: June 14, 2010
Creator: Rumble, C.; Conry, T.E.; Doeff, Marca; Cairns, Elton J.; Penner-Hahn, James E. & Deb, Aniruddha
Partner: UNT Libraries Government Documents Department

Balance of Nanostructure and Bimetallic Interactions in Pt Model Fuel Cell Catalysts: An in Situ XAS and DFT Study

Description: We have studied the effect of nanostructuring in Pt monolayer model electrocatalysts on a Rh(111) single-crystal substrate on the adsorption strength of chemisorbed species. In situ high energy resolution fluorescence detection X-ray absorption spectroscopy at the Pt L(3) edge reveals characteristic changes of the shape and intensity of the 'white-line' due to chemisorption of atomic hydrogen (H(ad)) at low potentials and oxygen-containing species (O/OH(ad)) at high potentials. On a uniform, two-dimensional Pt monolayer grown by Pt evaporation in ultrahigh vacuum, we observe a significant destabilization of both H(ad) and O/OH(ad) due to strain and ligand effects induced by the underlying Rh(111) substrate. When Pt is deposited via a wet-chemical route, by contrast, three-dimensional Pt islands are formed. In this case, strain and Rh ligand effects are balanced with higher local thickness of the Pt islands as well as higher defect density, shifting H and OH adsorption energies back toward pure Pt. Using density functional theory, we calculate O adsorption energies and corresponding local ORR activities for fcc 3-fold hollow sites with various local geometries that are present in the three-dimensional Pt islands.
Date: May 31, 2012
Creator: Friebel, Daniel; Viswanathan, Venkatasubramanian; Miller, Daniel James; Anniyev, Toyli; Ogasawara, Hirohito; Larsen, Ask Hjorth et al.
Partner: UNT Libraries Government Documents Department

Soft X-ray Spectroscopy Study of the Electronic Structure of Oxidized and Partially Oxidized Magnetite Nanoparticles

Description: The crystal structure of magnetite nanoparticles may be transformed to maghemite by complete oxidation, but under many relevant conditions the oxidation is partial, creating a mixed-valence material with structural and electronic properties that are poorly characterized. We used X-ray diffraction, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, and soft X-ray absorption and emission spectroscopy to characterize the products of oxidizing uncoated and oleic acid-coated magnetite nanoparticles in air. The oxidization of uncoated magnetite nanoparticles creates a material that is structurally and electronically indistinguishable from maghemite. By contrast, while oxidized oleic acid-coated nanoparticles are also structurally indistinguishable from maghemite, Fe L-edge spectroscopy revealed the presence of interior reduced iron sites even after a 2-year period. We used X-ray emission spectroscopy at the O K-edge to study the valence bands (VB) of the iron oxide nanoparticles, using resonant excitation to remove the contributions from oxygen atoms in the ligands and from low-energy excitations that obscured the VB edge. The bonding in all nanoparticles was typical of maghemite, with no detectable VB states introduced by the long-lived, reduced-iron sites in the oleic acid-coated sample. However, O K-edge absorption spectroscopy observed a 0.2 eV shift in the position of the lowest unoccupied states in the coated sample, indicating an increase in the semiconductor band gap relative to bulk stoichiometric maghemite that was also observed by optical absorption spectroscopy. The results show that the ferrous iron sites within ferric iron oxide nanoparticles coated by an organic ligand can persist under ambient conditions with no evidence of a distinct interior phase and can exert an effect on the global electronic and optical properties of the material. This phenomenon resembles the band gap enlargement caused by electron accumulation in the conduction band of TiO2.
Date: October 24, 2010
Creator: Gilbert, Benjamin; Katz, Jordan E.; Denlinger, Jonathan D.; Yin, Yadong; Falcone, Roger & Waychunas, Glenn A.
Partner: UNT Libraries Government Documents Department

Orbital Moment Determination in (MnxFe1-x)3O4 Nanoparticles

Description: Nanoparticles of (Mn{sub x}Fe{sub 1-x}){sub 3}O{sub 4} with a concentration ranging from x = 0 to 1 and a crystallite size of 14-15 nm were measured using X-ray absorption spectroscopy and X-ray magnetic circular dichroism to determine the ratio of the orbital moment to the spin moment for Mn and Fe. At low Mn concentrations, the Mn substitutes into the host Fe{sub 3}O{sub 4} spinel structure as Mn{sup 2+} in the tetrahedral A-site. The net Fe moment, as identified by the X-ray dichroism intensity, is found to increase at the lowest Mn concentrations then rapidly decrease until no dichroism is observed at 20% Mn. The average Fe orbit/spin moment ratio is determined to initially be negative and small for pure Fe{sub 3}O{sub 4} nanoparticles and quickly go to 0 by 5%-10% Mn addition. The average Mn moment is anti-aligned to the Fe moment with an orbit/spin moment ratio of 0.12 which gradually decreases with Mn concentration.
Date: October 22, 2010
Creator: Pool, V. L.; Jolley, C.; Douglas, T.; Arenholz, E. & Idzerda, Y. U.
Partner: UNT Libraries Government Documents Department

Selenium hyperaccumulation offers protection from cell disruptor herbivores

Description: Hyperaccumulation, the rare capacity of certain plant species to accumulate toxic trace elements to levels several orders of magnitude higher than other species growing on the same site, is thought to be an elemental defense mechanism against herbivores and pathogens. Previous research has shown that selenium (Se) hyperaccumulation protects plants from a variety of herbivores and pathogens. Selenium hyperaccumulating plants sequester Se in discrete locations in the leaf periphery, making them potentially more susceptible to some herbivore feeding modes than others. In this study we investigate the protective function of Se in the Se hyperaccumulators Stanleya pinnata and Astragalus bisulcatus against two cell disrupting herbivores, the western flower thrips (Frankliniella occidentalis) and the two-spotted spider mite (Tetranychus urticae). Astragalus bisulcatus and S. pinnata with high Se concentrations (greater than 650 mg Se kg{sup -1}) were less subject to thrips herbivory than plants with low Se levels (less than 150 mg Se kg{sup -1}). Furthermore, in plants containing elevated Se levels, leaves with higher concentrations of Se suffered less herbivory than leaves with less Se. Spider mites also preferred to feed on low-Se A. bisulcatus and S. pinnata plants rather than high-Se plants. Spider mite populations on A. bisulcatus decreased after plants were given a higher concentration of Se. Interestingly, spider mites could colonize A. bisulcatus plants containing up to 200 mg Se kg{sup -1} dry weight, concentrations which are toxic to many other herbivores. Selenium distribution and speciation studies using microfocused X-ray fluorescence ({mu}XRF) mapping and Se K-edge X-ray absorption spectroscopy revealed that the spider mites accumulated primarily methylselenocysteine, the relatively non-toxic form of Se that is also the predominant form of Se in hyperaccumulators. This is the first reported study investigating the protective effect of hyperaccumulated Se against cell-disrupting herbivores. The finding that Se protected the two hyperaccumulator species ...
Date: July 6, 2011
Creator: Quinn, Colin F; Freeman, John L; Reynolds, Ray JB; Cappa, Jennifer J; Fakra, Sirine C; Marcus, Matthew A et al.
Partner: UNT Libraries Government Documents Department

Spectromicroscopy study of interfacial Co/NiO(001)

Description: Photoemission electron microscopy (PEEM) with linearly polarized x-rays is used to determine the orientation of antiferromagnetic domains by monitoring the relative peak intensities at the 3d transition metal L{sub 2} absorption edge. In such an analysis the orientations of the x-ray polarization E and magnetization H with respect to the crystalline axes has to be taken into account. We address this problem by presenting a general expression of the angular dependence for both x-ray absorption spectroscopy and x-ray magnetic linear dichroism (XMLD) for arbitrary direction of E and H in the (001) cubic plane. In cubic symmetry the angular dependent XMLD is a linear combination of two spectra with different photon energy dependence, which reduces to one spectrum when E or H is along a high-symmetry axis. The angular dependent XMLD can be separated into an isotropic term, which is symmetric along H, and an anisotropic term, which depends on the orientation of the crystal axes. The anisotropic term has maximal intensity when E and H have equal but opposite angles with respect to the [100] direction. The Ni{sup 2+} L{sub 2} edge has the peculiarity that the isotropic term vanishes, which means that the maximum in the XMLD intensity is observed not only for E {parallel} H {parallel} [100] but also for (E {parallel} [110], H {parallel} [110]). We apply the angular dependent theory to determine the spin orientation near the Co/NiO(100) interface. The PEEM images show that the ferromagnetic Co moments and antiferromagnetic NiO moments are aligned perpendicular to each other. By rotating the sample with respect to the linear x-ray polarization we furthermore find that the perpendicular coupling with the ferromagnetic Co layer at the interface causes a canting of the antiferromagnetic Ni moments. This shows that taking into account the angular dependence of the XMLD in ...
Date: September 26, 2010
Creator: van der Laan, Gerrit; Telling, Neil; Potenza, Alberto; Dhesi, Sarnjeet & Arenholz, Elke
Partner: UNT Libraries Government Documents Department

Synthesis, structure elucidation and redox properties of 99Tc complexes of lacunary Wells Dawson polyoxometalates: insights into molecular 99Tc - metal oxide interactions

Description: The isotope 99Tc (beta max: 250 keV, half-life: 2 x 105 year) is an abundant product of uranium-235 fission in nuclear reactors and is present throughout the radioactive waste stored in underground tanks at Hanford and Savannah River. Understanding and controlling the extensive redox chemistry of 99Tc is important to identify tunable strategies to separate 99Tc from spent fuel and from waste tanks and once separated, to identify and develop an appropriately stable waste-form for 99Tc. Polyoxometalates (POMs), nanometer sized models for metal oxide solid-state materials, are used in this study to provide a molecular level understanding of the speciation and redox chemistry of incorporated 99Tc. In this study, 99Tc complexes of the (alpha 2-P2W17O61)10- and (alpha 1-P2W17O61)10- isomers were prepared. Ethylene glycol was used as a"transfer ligand" to minimize the formation of TcO2 cdot xH2O. The solution structures, formulations, and purity of TcVO(alpha 1/alpha 2-P2W17O61)7- were determined by multinuclear NMR. X-ray Absorption Spectroscopy of the complexes are in agreement with the formulation and structures determined from 31P and 183W NMR. Preliminary electrochemistry results are consistent with the EXAFS results, showing a facile reduction of the TcVO(alpha 1-P2W17O61)7- species compared to the TcVO(alpha 2-P2W17O61)7- analog. The alpha1- defect is unique in that a basic oxygen atom is positioned toward the alpha1- site and the TcVO center appears to form a dative metal-metal bond with a framework W site. These attributes may lead to the assistance of protonation events that facilitate reduction. Electrochemistry comparison shows that the ReV analogs are about 200 mV more difficult to reduce in accordance with periodic trends.
Date: January 10, 2011
Creator: McGregor, Donna; Burton-Pye, Benjamin P.; Howell, Robertha C.; Mbomekalle, Israel M.; Lukens Jr, Wayne W.; Bian, Fang et al.
Partner: UNT Libraries Government Documents Department

Enhanced Magnetism of Fe3O4 Nanoparticles with Ga Doping

Description: Magnetic (Ga{sub x}Fe{sub 1-x}){sub 3}O{sub 4} nanoparticles with 5%-33% gallium doping (x = 0.05-0.33) were measured using x-ray absorption spectroscopy and x-ray magnetic circular dichroism to determine that the Ga dopant is substituting for Fe{sub 3+} as Ga{sub 3+} in the tetrahedral A-site of the spinel structure, resulting in an overall increase in the total moment of the material. Frequency-dependent alternating-current magnetic susceptibility measurements showed these particles to be weakly interacting with a reduction of the cubic anisotropy energy term with Ga concentration. The element-specific dichroism spectra show that the average Fe moment is observed to increase with Ga concentration, a result consistent with the replacement of A-site Fe by Ga.
Date: October 22, 2010
Creator: Pool, V. L.; Klem, M. T.; Chorney, C. L.; Arenholz, E. & Idzerda, Y.U.
Partner: UNT Libraries Government Documents Department

Ferromagnetism in Mn-Implanted Epitaxially Grown Ge on Si(100)

Description: We have studied ferromagnetism of Mn-implanted epitaxial Ge films on silicon. The Ge films were grown by ultrahigh vacuum chemical vapor deposition using a mixture of germane (GeH{sub 4}) and methylgermane (CH{sub 3}GeH{sub 3}) gases with a carbon concentration of less than 1 at. %, and observed surface rms roughness of 0.5 nm, as measured by atomic force microscopy. Manganese ions were implanted in epitaxial Ge films grown on Si (100) wafers to an effective concentration of 16, 12, 6, and 2 at. %. Superconducting quantum interference device measurements showed that only the three highest Mn concentration samples are ferromagnetic, while the fourth sample, with [Mn] = 2 at. %, is paramagnetic. X-ray absorption spectroscopy and x-ray magnetic circular dichroism measurements indicate that localized Mn moments are ferromagnetically coupled below the Curie temperature. Isothermal annealing of Mn-implanted Ge films with [Mn] = 16 at. % at 300 C for up to 1200 s decreases the magnetization but does not change the Curie temperature, suggesting that the amount of the magnetic phase slowly decreases with time at this anneal temperature. Furthermore, transmission electron microscopy and synchrotron grazing incidence x-ray diffraction experiments show that the Mn-implanted region is amorphous, and we believe that it is this phase that is responsible for the ferromagnetism. This is supported by our observation that high-temperature annealing leads to recrystallization and transformation of the material into a paramagnetic phase.
Date: January 5, 2011
Creator: Guchhait, S.; Jamil, M.; Ohldag, H.; Mehta, A.; Arenholz, E.; Lian, G. et al.
Partner: UNT Libraries Government Documents Department

Direct contact vs. solvent-shared ion pairs in nicl2 electrolytesmonitored by multiplet effects at the ni(ii) l-edge x-ray absorptionDOC_XNOTE=Published by BESSY, Germany in collaboration with LawrenceBerkeley National Laboratory staff.

Description: We investigate the local electronic structure in aqueous NiCl{sub 2} electrolytes by Ni L edge x-ray absorption spectroscopy. The experimental findings are interpreted in conjunction with multiplet calculations of the electronic structure and the resulting spectral shape. In contrast to the situation in the solid, the electronic structure in the electrolyte reflects the absence of direct contact Ni-Cl ion pairs. We observe a systematic change of the intensity ratio of singlet and triplet-related spectral features as a function of electrolyte concentration. These changes can be described theoretically by a changed weight of transition matrix contributions with different symmetry. We interpret these findings as being due to progressive distortions of the local symmetry induced by solvent-shared ion pairs.
Date: March 29, 2007
Creator: Aziz, E.F.; Eisebitt, S.; Eberhardt, W.; de Groot, F.; Chiou,J.W.; Dong, C.L. et al.
Partner: UNT Libraries Government Documents Department

Picosecond x-ray absorption spectroscopy of photochemical transient species in solution

Description: A photoinduced Fe(II) spin crossover reaction in solution is studied with ultrafast x-ray absorption spectroscopy. The iron-nitrogen bond lengthens by 0.21+-0.03 Angstrom in the high-spin transient excited state relative to the ground state.
Date: August 7, 2006
Creator: Schoenlein, Robert William; Khalil, Munira; Marcus, Matthew A.; Smeigh, Amanda L.; McCusker, James K.; Chong, Henry H.W. et al.
Partner: UNT Libraries Government Documents Department

Visible Light-Induced Electron Transfer from Di-mu-oxo Bridged Dinuclear Mn Complexes to Cr Centers in Silica Nanopores

Description: The compound (bpy)2MnIII(mu-O)2MnIV(bpy)2, a structural model relevant for the photosynthetic water oxidation complex, was coupled to single CrVI charge-transfer chromophores in the channels of the nanoporous oxide AlMCM-41. Mn K-edge EXAFS spectroscopy confirmed that the di-mu-oxo dinuclear Mn core of the complex is unaffected when loaded into the nanoscale pores. Observation of the 16-line EPR signal characteristic of MnIII(mu-O)2MnIV demonstrates that the majority of the loaded complexes retained their nascent oxidation state in the presence or absence of CrVI centers. The FT-Raman spectrum upon visible light excitation of the CrVI-OII --> CrV-OI ligand-to-metal charge-transfer reveals electron transfer from MnIII(mu-O)2MnIV (Mn-O stretch at 700 cm-1) to CrVI, resulting in the formation of CrV and MnIV(mu-O)2MnIV (Mn-O stretch at 645 cm-1). All initial and final states are directly observed by FT-Raman or EPR spectroscopy, and the assignments corroborated by X-ray absorption spectroscopy measurements. The endoergic charge separation products (DELTA Eo = -0.6 V) remain after several minutes, which points to spatial separation of CrV and MnIV(mu-O)2MnIV as a consequence of hole (OI) hopping as a major contributing mechanism. This is the first observation of visible light-induced oxidation of a potential water oxidation complex by a metal charge-transfer pump in a nanoporous environment. These findings will allow for the assembly and photochemical characterization of well defined transition metal molecular units, with the ultimate goal of performing endothermic, multi-electron transformations that are coupled to visible light electron pumps in nanostructured scaffolds.
Date: June 3, 2008
Creator: Frei, Heinz; Weare, Walter W.; Pushkar, Yulia; Yachandra, Vittal K. & Frei, Heinz
Partner: UNT Libraries Government Documents Department

Controlled Assembly of Heterobinuclear Sites on Mesoporous Silica: Visible Light Charge-Transfer Units with Selectable Redox Properties

Description: Mild synthetic methods are demonstrated for the selective assembly of oxo-bridged heterobinuclear units of the type TiOCrIII, TiOCoII, and TiOCeIII on mesoporous silica support MCM-41. One method takes advantage of the higher acidity and, hence, higher reactivity of titanol compared to silanol OH groups towards CeIII or CoII precursor. The procedure avoids the customary use of strong base. The controlled assembly of the TiOCr system exploits the selective redox reactivity of one metal towards another (TiIII precursor reacting with anchored CrVI centers). The observed selectivity for linking a metal precursor to an already anchored partner versus formation of isolated centers ranges from a factor of six (TiOCe) to complete (TiOCr, TiOCo). Evidence for oxo bridges and determination of the coordination environment of each metal centers is based on K-edge EXAFS (TiOCr), L-edge absorption spectroscopy (Ce), and XANES measurements (Co, Cr). EPR, optical, FT-Raman and FT-IR spectroscopy furnish additional details on oxidation state and coordination environment of donor and acceptor metal centers. In the case of TiOCr, the integrity of the anchored group upon calcination (350 oC) and cycling of the Cr oxidation state is demonstrated. The binuclear units possess metal-to-metal charge-transfer transitions that absorb deep in the visible region. The flexible synthetic method for assembling the units opens up the use of visible light charge transfer pumps featuring donor or acceptor metals with selectable redox potential.
Date: June 4, 2008
Creator: Frei, Heinz; Han, Hongxian & Frei, Heinz
Partner: UNT Libraries Government Documents Department

Characterization of selective binding of alkali cations with carboxylate by x-ray absorption spectroscopy of liquid microjets

Description: We describe an approach for characterizing selective binding between oppositely charged ionic functional groups under biologically relevant conditions. Relative shifts in K-shell x-ray absorption spectra of aqueous cations and carboxylate anions indicate the corresponding binding strengths via perturbations of carbonyl antibonding orbitals. XAS spectra measured for aqueous formate and acetate solutions containing lithium, sodium, and potassium cations reveal monotonically stronger binding of the lighter metals, supporting recent results from simulations and other experiments. The carbon K-edge spectra of the acetate carbonyl feature centered near 290 eV clearly indicate a preferential interaction of sodium versus potassium, which was less apparent with formate. These results are in accord with the Law of Matching Water Affinities, relating relative hydration strengths of ions to their respective tendencies to form contact ion pairs. Density functional theory calculations of K-shell spectra support the experimental findings.
Date: January 8, 2008
Creator: Saykally, Richard J; Uejio, Janel S.; Schwartz, Craig P.; Duffin, Andrew M.; Drisdell, Walter S.; Cohen, Ronald C. et al.
Partner: UNT Libraries Government Documents Department

Where Water is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster from X-ray Spectroscopy

Description: Light-driven oxidation of water to dioxygen in plants, algae and cyanobacteria iscatalyzed within photosystem II (PS II) by a Mn4Ca cluster. Although the cluster has been studied by many different methods, the structure and the mechanism have remained elusive. X-ray absorption and emission spectroscopy and EXAFS studies have been particularly useful in probing the electronic and geometric structure, and the mechanism of the water oxidation reaction. Recent progress, reviewed here, includes polarized X-ray absorption spectroscopy measurements of PS II single crystals. Analysis of those results has constrained the Mn4Ca cluster geometry to a setof three similar high-resolution structures. The structure of the cluster from the present study is unlike either the 3.0 or 3.5 Angstrom-resolution X-ray structures or other previously proposed models. The differences between the models derived from X-rayspectroscopy and crystallography are predominantly because of damage to the Mn4Ca cluster by X-rays under the conditions used for structure determination by X-ray crystallography. X-ray spectroscopy studies are also used for studying the changes in the structure of the Mn4Ca catalytic center as it cycles through the five intermediate states known as the Si-states (i=0-4). The electronic structure of the Mn4Ca cluster has been studied more recently using resonant inelastic X-ray scattering spectroscopy (RIXS), in addition to the earlier X-ray absorption and emission spectroscopy methods. These studies are revealing that the assignment of formaloxidation states is overly simplistic. A more accurate description should consider the charge density on the Mn atoms that includes the covalency of the bonds and delocalization of the charge over the cluster. The geometric and electronic structure of the Mn4Ca cluster in the S-states derived from X-ray spectroscopy are leading to a detailed understanding of the mechanism of the O-O bond formation during the photosynthetic water splitting process.
Date: October 24, 2007
Creator: Yano, Junko; Yano, Junko & Yachandra, Vittal K.
Partner: UNT Libraries Government Documents Department

Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

Description: Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.
Date: January 31, 2008
Creator: Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo et al.
Partner: UNT Libraries Government Documents Department

Characterization of chemical bonding in low-k dielectric materialsfor interconnect isolation: a xas and eels study

Description: The use of low dielectric constant materials in the on-chipinterconnect process reduces interconnect delay, power dissipation andcrosstalk noise. To achieve the requirements of the ITRS for 2007-2009minimal sidewall damage from etch, ash or cleans is required. In chemicalvapor deposited (CVD) organo-silicate glass (OSG) which are used asintermetal dielectric (IMD) materials the substitution of oxygen in SiO2by methyl groups (-CH3) reduces the permittivity significantly (from 4.0in SiO2 to 2.6-3.3 in the OSG), since the electronic polarizability islower for Si-C bonds than for Si-O bonds. However, plasma processing forresist stripping, trench etching and post-etch cleaning removes C and Hcontaining molecular groups from the near-surface layer of OSG.Therefore, compositional analysis and chemical bonding characterizationof structured IMD films with nanometer resolution is necessary forprocess optimization. OSG thin films as-deposited and after plasmatreatment are studied using X-ray absorption spectroscopy (XAS) andelectron energy loss spectroscopy (EELS). In both techniques, the finestructure near the C1s absorption or energy loss edge, respectively,allows to identify C-H, C-C, and C-O bonds. This gives the opportunity todifferentiate between individual low-k materials and their modifications.The O1s signal is less selective to individual bonds. XAS spectra havebeen recorded for non-patterned films and EELS spectra for patternedstructures. The chemical bonding is compared for as-deposited andplasma-treated low-k materials. The Fluorescence Yield (FY) and the TotalElectron Yield (TEY) recorded while XAS measurement are compared.Examination of the C 1s near-edge structures reveal a modified bonding ofthe remaining C atoms in the plasma-treated sample regions.
Date: April 10, 2006
Creator: Hoffmann, P.; Schmeisser, D.; Engelmann, H.-J.; Zschech, E.; Stegmann, H.; Himpsel, F. et al.
Partner: UNT Libraries Government Documents Department

Electronic Excitations and Metal-Insulator Transition inPoly(3-hexylthiophene) Organic Field-Effect Transistors

Description: We carry out a comprehensive theoretical and experimentalstudy of charge injection in poly(3-hexylthiophene) (P3HT) to determinethe most likely scenario for metal-insulator transition in this system.Wecalculate the optical-absorption frequencies corresponding to a polaronand a bipolaron lattice in P3HT. We also analyze the electronicexcitations for three possible scenarios under which a first- or asecond-order metal-insulator transition can occur in doped P3HT. Thesetheoretical scenarios are compared with data from infrared absorptionspectroscopy on P3HT thin-film field-effect transistors (FETs). Ourmeasurements and theoretical predictions suggest that charge-inducedlocalized states in P3HT FETs are bipolarons and that the highest dopinglevel achieved in our experiments approaches that required for afirst-order metal-insulator transition.
Date: November 7, 2006
Creator: Sai, N.; Li, Z.Q.; Martin, M.C.; Basov, D.N. & Di Ventra, M.
Partner: UNT Libraries Government Documents Department

Mn l3,2 x-ray absorption spectroscopy and magnetic circulardichroism in ferromagnetic ga1-xmnxp

Description: We have measured the X-ray absorption (XAS) and X-ray magnetic circular dichroism (XMCD) at the Mn L{sub 3,2} edges in ferromagnetic Ga{sub 1-x}Mn{sub x}P films for 0.018 {le} x {le} 0.042. Large XMCD asymmetries at the L{sub 3} edge indicate significant spin-polarization of the density of states at the Fermi energy. The spectral shapes of the XAS and XMCD are nearly identical with those for Ga{sub 1-x}Mn{sub x}As indicating that the hybridization of Mn d states and anion p states is similar in the two materials. Finally, compensation with sulfur donors not only lowers the ferromagnetic Curie temperature but also reduces the spin polarization of the hole states.
Date: July 26, 2007
Creator: Stone, P.R.; Scarpulla, M.A.; Farshchi, R.; Sharp, I.D.; Beeman,J.W.; Yu, K.M. et al.
Partner: UNT Libraries Government Documents Department

Structure, Magnetism, and Transport of CuCr2Se4 Thin Films

Description: We report the successful growth of highly spin-polarized chalcogenide thin films of CuCr{sub 2}Se{sub 4}, which are promising candidates for spin-based electronic applications. We also present electronic structure calculations for CuCr{sub 2}Se{sub 4} that, together with magnetic and transport data, imply that the stoichiometric compound is a metallic ferromagnet with a relatively low density of hole-like carriers at the Fermi energy. These calculations also predict that a deficiency of Se will deplete the minority density of states at the Fermi energy perhaps leading to a half-metal. We have successfully grown thin films of CuCr{sub 2}Se{sub 4} by pulsed laser deposition on isostructural MgAl{sub 2}O{sub 4} substrates followed by an anneal in a Se-rich environment. X-ray diffraction confirms the structure of CuCr{sub 2}Se{sub 4} on MgAl{sub 2}O{sub 4} substrates as well as a secondary phase of Cr{sub 2}Se{sub 3}. X-ray absorption spectroscopy indicates that the chemical structure at the surface of the films is similar to that of bulk CuCr{sub 2}Se{sub 4} single crystals. Magnetization measurements indicate that these films saturate with a magnetic moment close to 5 {micro}{sub B} per formula unit and a T{sub c} above 400 K. X-ray magnetic circular dichroism shows that the magnetism persists to the surface of the film. Resistivity and Hall effect measurements are consistent with a p-type ferromagnetic metallic behavior and with the electronic structure calculations.
Date: April 1, 2007
Creator: Bettinger, J.S.; Chopdekar, R.V.; Liberati, M.; Neulinger, J.R.; Chshiev, M.; Takamura, Y. et al.
Partner: UNT Libraries Government Documents Department

Self-contained Kondo effect in single molecules

Description: Kondo coupling of f and conduction electrons is a common feature of f-electron intermetallics. Similar effects should occur in carbon ring systems (metallocenes). Evidence for Kondo coupling in Ce(C{sub 8}H{sub 8}){sub 2} (cerocene) and the ytterbocene Cp*{sub 2}Yb(bipy) is reported from magnetic susceptibility and L{sub III}-edge x-ray absorption spectroscopy. These well-defined systems provide a new way to study the Kondo effect on the nanoscale, should generate insight into the Anderson Lattice problem, and indicate the importance of this often-ignored contribution to bonding in organometallics.
Date: April 25, 2005
Creator: Booth, Corwin H.; Walter, Marc D.; Daniel, Million; Lukens, WayneW. & Andersen, Richard A.
Partner: UNT Libraries Government Documents Department

Detection and Quantification of Pu(III, IV, V, and VI) Using a1.0-meter Liquid Core Waveguide

Description: Detection and quantification of the aquo ions of Pu in 1 MHClO4 was carried out using a 1-meter liquid core waveguide (LCW) coupledto a fiber optic UV-Vis spectrometer. Detection limits of 7 x 10-7 M forPu(VI), 1.6 x 10-5 M for Pu(V), 5 x 10-6 M for Pu(IV) and 8 x 10-6 M forPu(III) were achieved. The limits of detection represent increases of 18to 33 times those achievable using a conventional 1-cm path length.Because of the much lower detection limits of the LCW, routineidentification of the oxidation states in dilute Pu solutions can bemade.
Date: February 15, 2005
Creator: Wilson, Richard E.; Hu, Yung-Jin & Nitsche, Heino
Partner: UNT Libraries Government Documents Department

Millisecond Kinetics of Nanocrystal Cation Exchange UsingMicrofluidic X-ray Absorption Spectroscopy

Description: We describe the use of a flow-focusing microfluidic reactorto measure the kinetics of theCdSe-to-Ag2Se nanocrystal cation exchangereaction using micro-X-ray absorption spectroscopy (mu XAS). The smallmicroreactor dimensions facilitate the millisecond mixing of CdSenanocrystal and Ag+ reactant solutions, and the transposition of thereaction time onto spatial coordinates enables the in situ observation ofthe millisecond reaction with mu XAS. XAS spectra show the progression ofCdSe nanocrystals to Ag2Se over the course of 100 ms without the presenceof long-lived intermediates. These results, along with supporting stoppedflow absorption experiments, suggest that this nanocrystal cationexchange reaction is highly efficient and provide insight into how thereaction progresses in individual particles. This experiment illustratesthe value and potential of in situ microfluidic X-ray synchrotrontechniques for detailed studies of the millisecond structuraltransformations of nanoparticles and other solution-phase reactions inwhich diffusive mixing initiates changes in local bond structures oroxidation states.
Date: May 7, 2007
Creator: Chan, Emory M.; Marcus, Matthew A.; Fakra, Sirine; Elnaggar,Mariam S.; Mathies, Richard A. & Alivisatos, A. Paul
Partner: UNT Libraries Government Documents Department