Explore Results

open access

Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

Description: Each testing and analytical facility performing waste characterization activities for the Waste Isolation Pilot Plant (WIPP) participates in the Performance Demonstration Program (PDP) to comply with the Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC) (DOE/WIPP-02-3122) and the Quality Assurance Program Document (QAPD) (CBFO-94-1012). The PDP serves as a quality control check for data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed to each of the facilities participating in the PDP. The PDP evaluates analyses of simulated headspace gases, constituents of the Resource Conservation and Recovery Act (RCRA), and transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques.
Date: April 1, 2009
Creator: /A, N
Partner: UNT Libraries Government Documents Department
open access

Scaled Experimental Modeling of VHTR Plenum Flows

Description: Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (“thermal striping”) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.
Date: April 1, 2007
Creator: 15, ICONE
Partner: UNT Libraries Government Documents Department
open access

Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Processing

Description: The stability of tungsten carbide particles in iron-rich and nickel-rich liquid during the laser surface alloying (LSA) process was investigated. Kinetic calculations indicate a rapid dissolution of tungsten carbide particles in iron-rich liquid, as compared with the dissolution rate in nickel-rich liquid. Optical microscopy indicated a heterogeneous microstructure around the tungsten particles that is in agreement with concentration gradients predicted by kinetic calculation. The work demonstrates the applicability of computational thermodynamics and kinetic models for the LSA process.
Date: April 1, 2002
Creator: A, Babu S S Martukanitz R P Parks K D David S
Partner: UNT Libraries Government Documents Department
open access

Pressure-induced Breaking of Equilibrium Flux Surfaces in the W7AS Stellarator

Description: Calculations are presented for two shots in the W7AS stellarator which differ only in the magnitude of the current in the divertor control coil, but have very different values of experimentally attainable β (<β> ≈ 2.7% versus <β> ≈ 1.8%). Equilibrium calculations find that a region of chaotic magnetic field line trajectories fills approximately the outer 1/3 of the cross-section in each of these configurations. The field lines in the stochastic region are calculated to behave as if the flux surfaces are broken only locally near the outer midplane and are preserved elsewhere. The calculated magnetic field line diffusion coefficients in the stochastic regions for the two shots are consistent with the observed differences in the attainable β, and are also consistent with the differences in the reconstructed pressure profiles.
Date: April 24, 2007
Creator: A. Reiman, M.C. Zarnstorff, D. Monticello, A. Weller, J. Geiger, and the W7-AS Team
Partner: UNT Libraries Government Documents Department
open access

Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades In Magentized Weakly Collisional Plasmas

Description: This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations become the …
Date: April 23, 2009
Creator: A.A. Schekochihin, S.C. Cowley, W. Dorland, G.W. Hammett, G.G. Howes, E. Quataert, and T. Tatsuno
Partner: UNT Libraries Government Documents Department
open access

Impact of the LHC beam abort kicker prefire on high luminosity insertion and CMS detector performance

Description: The effect of possible accidental beam loss in LHC on the IP5 insertion elements and CMS detector is studied via realistic Monte Carlo simulations. Such beam loss could be the consequence of an unsynchronized abort or � in worst case � an accidental prefire of one of the abort kicker modules. Simulations with the STRUCT code show that this beam losses would take place in the IP5 inner and outer triplets. MARS simulations of the hadronic and electro-magnetic cascades induced in such an event indicate severe heating of the inner triplet quadrupoles. In order to protect the IP5 elements, two methods are proposed: a set of shadow collimators in the outer triplet and a prefired module compensation using a special module charged with an opposite voltage (antikicker). The remnants of the accidental beam loss entering the experimental hall have been used as input for FLUKA simulations in the CMS detector. It is shown that it is vital to take measures to reliably protect the expensive CMS tracker components.
Date: April 13, 1999
Creator: A.I. Drozhdin, N.V. Mokhov and M. Huhtinen
Partner: UNT Libraries Government Documents Department
open access

On possible use of bent crystal to improve Tevatron beam scraping

Description: A possibility to improve the Tevatron beam halo scraping using a bent channeling crystal instead of a thin scattering primary collimator is studied. To evaluate the efficiency of the system, realistic simulations have been performed using the CATCH and STRUCT Monte Carlo codes. It is shown that the scraping efficiency can be increased and the accelerator-related backgrounds in the CDF and DØ collider detectors can be reduced by about one order of magnitude. Results on scraping efficiency versus thickness of amorphous layer of the crystal, crystal alignment and its length are presented.
Date: April 8, 1999
Creator: A.I. Drozhdin, N.V. Mokhov and V.M. Biryukov
Partner: UNT Libraries Government Documents Department
open access

Radiation environment resulting from Main Injector beam extraction to the NuMI beam line

Description: A 120 GeV Main Injector proton beam will be delivered to the NuMI beam line at Fermilab at the rate of 3.7x 10{sup 20} per year. Realistic Monte Carlo simulations have been performed to examine the radiation environment in the beam extraction system and NuMI beam line elements. A complete 3-D model of the 160 meter extraction region has been implemented utilizing the computer code MARS. The model includes a description of the field of the electrostatic septa and POISSON calculated field maps of the Lambertson magnets and the other lattice components in the area. The beam element alignment and the source term have been simulated using the code STRUCT. Results on beam losses in the system, energy deposition in the core elements and residual dose rates on the components are presented.
Date: April 29, 1999
Creator: A.I. Drozhdin, P.W. Lucas, N.V. Mokhov, C.D. Moore and S.I. Striganov
Partner: UNT Libraries Government Documents Department
Back to Top of Screen