UNT Libraries Government Documents Department - Browse


Wind-Tunnel Tests of a 0.16-Scale Model of the Douglas MX-656 Airplane at High Subsonic Speeds, 1, Stability and Control Characteristics

Description: Wind tunnel tests of the 0.16-scale Douglas MX-656 model were made at low and high subsonic Mach numbers to investigate the static longitudinal- and lateral stability characteristics. The tests shows that undesirable changes in longitudinal stability at the stall were apparently caused by an altered downwash pattern at the tail. The jettisonable nose fins were highly destabilizing. Compressibility effects for the test Mach numbers were not detrimental to the longitudinal- or lateral-stability characteristics.
Date: April 1, 1949
Creator: Hamilton, William T. & Cleary, Joseph W.

Wind-Tunnel Tests of a 0.16-Scale Model of the Douglas MX-656 Airplane at High Subsonic Speeds. II - Wing and Fuselage Pressure Distribution

Description: Measurements of wing and fuselage pressure distributions were made at low and high subsonic Much numbers on a 0.16-scale model of the projected MX-656 research airplane. The MX-656 is a supersonic design utilizing a low-aspect-ratio wing and tail. Pressure-distribution measurements indicated that, although the critical Mach number of the wing was approximately 0.81 at 0 degree angle of attack, compressibility effects were of little significance below a Mach number of at least 0.90. The principal effect of compressibility was an increase in the pressure gradient over the after 30 percent of the wing chord, causing a tendency for the flow to separate. At 0.40 Mach number, the wing stalled abruptly at approximately 12 deg, angle of attack. The wing-pressure distribution showed this stall was a result of complete separation of the flow from the upper surface of the wing, Deflecting the leading-edge flaps delayed the stall to a higher angle of attack with some increase in the maximum section normal force,.
Date: August 22, 1949
Creator: Cleary, Joseph W. & Mellenthin, Jack A.

Wind-Tunnel Tests of a 0.182-Scale Model of an F4U-1 Airplane with External Stores

Description: Tests were made in the Langley 7- by 10-foot tunnel on a 0.182-scale model of an F4U-1 airplane with external stores. This paper is concerned mainly with presenting the data obtained in this investigation and with a comparison of some of these data with flight-test results determining the feasibility of estimating flight buffet Mach number from tunnel data. The results of this investigation indicate that the incremental drag coefficient due to external stores may be used to estimate the maximum Mach number that the F4U-1 airplane may reach in flight when it is equipped with external stores. This estimation is conservative for the five configurations investigated by mounts varying from 0 to 10 percent of the flight limit Mach number. The free-stream tunnel Mach number corresponding to sonic flow over the lower surface of the wing in the region of the store is a good indication of the lower limit of buffet in flight of the F4U-1 airplane when equipped with external stores. The fluctuations of total pressure over the horizontal tail are not sufficiently large (maximum of 1 percent q(sub o) to cause buffeting of the airplane.
Date: June 5, 1947
Creator: Silvers, H. Norman & Spreemann, Kenneth P.

Wind-Tunnel Tests of a 1/4-Scale Model of the Naval Aircraft Factory Float-Wing Convoy Interceptor, TED No. NACA 2314

Description: A 1/4 - scale model of the Naval Aircraft Factory float-wing convoy interceptor was tested in the Langley 7-by 10-foot tunnel to determine the longitudinal and lateral stability characteristics. The model was tested in the presence of a ground board to determine the effect of simulating the ground on the longitudinal characteristics.
Date: January 16, 1947
Creator: Wells, Evalyn G. & McKinney, Elizabeth G.

Wind-Tunnel Tests of a 1/8-Scale Powered Model of the XTB3F-1 Airplane, TED No. NACA 2382

Description: A 1/8 scale model of the Grumman XTB3F-1 airplane was tested in the Langley 7- by 10-foot tunnel to determine the stability and control characteristics and to provide data for estimating the airplane handling qualities. The report includes longitudinal and lateral stability and control characteristics of the complete model, the characteristics of the isolated horizontal tail, the effects of various flow conditions through the jet duct, tests with external stores attached to the underside of the wing, ana tests simulating landing and take-off conditions with a ground board. The handling characteristics of the airplane have not been computed but some conclusions were indicated by the data. An improvement in the longitudinal stability was obtained by tilting the thrust line down. It is shown that if the wing flap is spring loaded so that the flap deflection varies with airspeed, the airplanes will be less stable than with the flap retracted or fully deflected. An increase in size of the vertical tail and of the dorsal fin gave more desirable yawing-moment characteristics than the original vertical tail and dorsal fin. Preventing air flow through the jet duct system or simulating jet operation with unheated air produced only small changes in the model characteristics. The external stores on the underside of the wing had only small effects on the model characteristics. After completion of the investigation, the model was returned to the contractor for modifications indicated by the test results.
Date: August 1, 1947
Creator: McKee, John W. & Vogler, Raymond D.

Wind-tunnel tests of a model of a wingless fin-controlled missile to obtain static stability and control characteristics through a range of Mach numbers from 0.5 to 0.88

Description: An investigation at medium to high subsonic speeds has been conducted in the Langley low-turbulence pressure tunnel to determine the static stability and control characteristics and to measure the fin normal forces and moments for a model of a wingless fin-controlled missile. The data were obtained at Reynolds number of 2.1 x 10(6) based on the missile maximum diameter or 17.7 x 10(6) based on missile length; this Reynolds number was found to be large enough to avoid any large scale effects between the test and the expected flight Reynolds number. With the horizontal-fin deflection limited to a maximum of 6 degrees, longitudinally stable and trimmed flight could not be maintained beyond an angle of attack of 17 degrees for a Mach number of 0.88 and beyond 20 degrees for a Mach number of 0.50 for any center-of-gravity location without the use of some auxiliary stability or control device such as jet vanes. Mach number had no appreciable effect on the center-of-pressure positions and only a slight effect on neutral-point position. There was a shift in neutral-point position of about 1 caliber as the angle of attack was varied through the range for which the neutral point could be determined. Yawing the model to angles of sideslip up to 7 degrees had little effect on the longitudinal stability at angles of attack up to 15 degrees; however, above 15 degrees, the effect of sideslip was destabilizing. With the vertical fins at a plus-or-minus 6 degree roll deflection, the rolling moment caused by yawing the model at high angles of attack could be trimmed out up to angles of sideslip of 6.5 degrees and an angle of attack of 26 degrees for a Mach number of 0.50; this range of sideslip angles was reduced to 3 degrees at a Mach number ...
Date: April 12, 1954
Creator: Burrows, Dale L & Newman, Ernest E

Wind-Tunnel Tests of a Modified Koppers Aeromatic Impeller-Generator Combination, TED No. NACA ARR 2901

Description: An investigation was conducted in the 6- by 6-foot test section of the Langley stability tunnel on a modified Koppers Aeromatic wind-driven impeller-generator combination. This investigation consisted of a few fixed pitch tests and a series of variable pitch tests, The fixed pitch tests indicated that the impeller should operate between the blade-pitch angles of 20 and 32deg at the specified output of 11.7 kilowatts in order to remain within the specified rotational speed of from 5000 to 8000 rpm for airspeeds of from 130 to 175 miles per hour. The requirement that the impeller maintain rotational speeds of - between 5000 and 8000 rpm as the impeller output varied from 0 to ll.7 kilowatts at airspeeds of from 130 to 175 miles per hour was not met at any tims during the variable pitch tests. The main difficulty seemed to be the inability of the impeller blades to change blade-pitch angle smoothly and quickly as load conditions varied. There was some indication that the vibration normally occurring on an airplane might cause the impeller to operate satisfactorily.
Date: December 26, 1946
Creator: Queijo, M. J.

Wind-Tunnel Tests of the 1/25-Scale Powered Model of the Martin JRM-1 Airplane. IV - Tests with Ground Board and with Modified Wing and Hull - TED No. NACA 232, Part 4, Tests with Ground Board and with Modified Wing and Hull, TED No. NACA 232

Description: Wind-tunnel tests were made of a 1/25 scale model of the Martin JRM-1 airplane to determine: (1) The longitudinal stability and control characteristics of the JRM-1 model near the water and lateral and directional stability characteristics with power while moving on the surface of the water, the latter being useful for the design of tip floats; (2) The stability and stalling characteristics of the wing with a modified airfoil contour; (3) Stability characteristics of a hull of larger design gross weight; The test results indicated that the elevator was powerful enough to trim the original model in a landing configuration at any lift coefficient within the specified range of centers of gravity. The ground-board tests for evaluating the aerodynamic forces and moments on an airplane in a simulated cross wind indicate a high dihedral effect in the presence of the ground board and, consequently, during low-speed taxying and take-off, large overturning moments would result which would have to be overcome by the tip floats.
Date: September 4, 1947
Creator: Lockwood, Vernard E. & Smith, Bernard J.