UNT Libraries Government Documents Department - 1,563 Matching Results

Search Results

Aeromechanical Experimentation (Wind Tunnel Tests)
The following report endeavors to show that aeromechanical experimentation has become an important aid to theory. Experiments can be tried with separate parts of airplanes or with models of whole airplanes, with propellers, and with anything else that comes into contact with moving air.
Aeronautic Instruction in Germany
This report contains a list of the courses relating to aeronautics announced in Germany, both in the technical high schools and in the universities.
Aeronautic Instruments
"The development of aeronautic instruments. Vibrations, rapid changes of the conditions of flight and of atmospheric conditions, influence of the air stream all call for particular design and construction of the individual instruments. This is shown by certain examples of individual instruments and of various classes of instruments for measuring pressure, change of altitude, temperature, velocity, inclination and turning or combinations of these" (p. 1).
Aeronautic instruments. Section 1: general classification of instruments and problems including bibliography
This report is intended as a technical introduction to the series of reports on aeronautic instruments. It presents a discussion of those subjects which are common to all instruments. First, a general classification is given, embracing all types of instruments used in aeronautics. Finally, a classification is given of the various problems confronted by the instrument expert and investigator. In this way the following groups of problems are brought up for consideration: problems of mechanical design, human factor, manufacturing problems, supply and selection of instruments, problems concerning the technique of testing, problems of installation, problems concerning the use of instruments, problems of maintenance, and physical research problems. This enumeration of problems which are common to instruments in general serves to indicate the different points of view which should be kept in mind in approaching the study of any particular instrument.
Aeronautic instruments. Section 2: altitude instruments
This report is Section two of a series of reports on aeronautic instruments (Technical Report nos. 125 to 132, inclusive). This section discusses briefly barometric altitude determinations, and describes in detail the principal types of altimeters and barographs used in aeronautics during the recent war. This is followed by a discussion of performance requirements for such instruments and an account of the methods of testing developed by the Bureau of Standards. The report concludes with a brief account of the results of recent investigations. For accurate measurements of altitude, reference must also be made to thermometer readings of atmospheric temperature, since the altitude is not fixed by atmospheric pressure alone. This matter is discussed in connection with barometric altitude determination.
Aeronautic Instruments Section 3: Aircraft Speed Instruments
Part 1 contains a discussion and description of the various types of air speed measuring instruments. The authors then give general specifications and performance requirements with the results of tests on air speed indicators at the Bureau of Standards. Part 2 reports methods and laboratory apparatus used at the Bureau of Standards to make static tests. Methods are also given of combining wind tunnel tests with static tests. Consideration is also given to free flight tests. Part 3 discusses the problem of finding suitable methods for the purpose of measuring the speed of aircraft relative to the ground.
Aeronautic Instruments Section 4: Direction Instruments
Part one points out the adequacy of a consideration of the steady state gyroscopic motion as a basis for the discussion of displacements of the gyroscope mounted on an airplane, and develops a simple theory on this basis. Part two describes a new type of stabilizing gyro mounted on top of a spindle by means of a universal joint, the spindle being kept in a vertical position by supporting it as a pendulum of which the bob is the driving motor. Methods of tests and the difficulties in designing a satisfactory and reliable compass for aircraft use in considered in part three. Part four contains a brief general treatment of the important features of construction of aircraft compasses and description of the principal types used.
Aeronautic instruments. Section 5 : power plant instruments
Part 1 gives a general discussion of the uses, principles, construction, and operation of airplane tachometers. Detailed description of all available instruments, both foreign and domestic, are given. Part 2 describes methods of tests and effect of various conditions encountered in airplane flight such as change of temperature, vibration, tilting, and reduced air pressure. Part 3 describes the principal types of distance reading thermometers for aircraft engines, including an explanation of the physical principles involved in the functioning of the instruments and proper filling of the bulbs. Performance requirements and testing methods are given and a discussion of the source of error and results of tests. Part 4 gives methods of tests and calibration, also requirements of gauges of this type for the pressure measurement of the air pressure in gasoline tanks and the engine oil pressure on airplanes. Part 5 describes two types of gasoline gauges, the float type and the pressure type.
Aeronautic instruments. Section 6 : aerial navigation and navigating instruments
This report outlines briefly the methods of aerial navigation which have been developed during the past few years, with a description of the different instruments used. Dead reckoning, the most universal method of aerial navigation, is first discussed. Then follows an outline of the principles of navigation by astronomical observation; a discussion of the practical use of natural horizons, such as sea, land, and cloud, in making extant observations; the use of artificial horizons, including the bubble, pendulum, and gyroscopic types. A description is given of the recent development of the radio direction finder and its application to navigation.
Aeronautic Instruments Section 6: Oxygen Instruments
This report contains statements as to amount of oxygen required at different altitudes and the methods of storing oxygen. The two types of control apparatus - the compressed oxygen type and the liquid oxygen type - are described. Ten different instruments of the compressed type are described, as well as the foreign instruments of the liquid types. The performance and specifications and the results of laboratory tests on all representative types conclude this report.
Aeronautic Instruments Section 8: Recent Developments and Outstanding Problems
This report is section VIII of a series of reports on aeronautic instruments. The preceding reports in this series have discussed in detail the various types of aeronautic instruments which have reached a state of practical development such that they have already found extensive use. It is the purpose of this paper to discuss briefly some of the more recent developments in the field of aeronautic instrument design and to suggest some of the outstanding problems awaiting solution.
Aeronautic Insurance
The problem of insuring the emerging commercial aeronautic industry is detailed. The author also motes that a complete solution cannot be obtained until the necessary statistics are compiled.
Aeronautical Instruments
Note presenting a number of instruments that can assist pilots with observing the position of the airplane. Some of the instruments include an inclinometer with stationary system of reference and an inclinometer with moving axes.
Aeronautical Museums
Different methods of presenting aeronautical artifacts are examined. The advantages of operating an aeronautical museum and its ability to increase public interest in aircraft are provided.
Aeronautical Record: No. 1 (to June, 1923)
Memorandum presenting an overview of the development of aeronautical industries and commercial aircraft as well as some of the problems that are resulting from it. Details of the aeronautical budget in various countries, organization of the air service, material exports, and airline operations are provided.
Air Cooling: An Experimental Method of Evaluating the Cooling Effect of Air Streams on Air-Cooled Cylinders
In this report is described an experimental method which the writer has evolved for dealing with air-cooled engines, and some of the data obtained by its means. Methods of temperature measurement and cooling are provided.
Air-Flow Experiments
This report describes the apparatus used to take air-flow photographs. The photographs show chiefly the spiral course of the lines of flow near the tip of the wing. They constitute therefore a visual presentation of the phenomena covered by airfoil theory.
Air Flow Investigation for Location of Angle of Attack Head on a JN4h Airplane
The technical staff of the NACA at Langley Field, has made a series of free flight tests with a JN4h airplane in order to find the best place for an instrument for measuring the angle of attack. A "neutral zone" was found where the air remains either at rest relative to the undisturbed air beyond the influence of the airplane, or is set in motion parallel to the motion of the airplane. This zone is about midway between the two wings and slightly in front of, or at the vertical plane through the leading edges of the wings but the exact position as well as the outlines of the zone varies considerably as the conditions of flight change.
Air force and moment for N-20 wing with certain cut-outs
From Introduction: "The airplane designer often finds it necessary, in meeting the requirements of visibility, to remove area or to otherwise locally distort the plan or section of an airplane wing. This report, prepared for the Bureau of Aeronautics January 15, 1925, contains the experimental results of tests on six 5 by 30 inch N-20 wing models, cut out or distorted in different ways, which were conducted in the 8 by 8 foot wind tunnel of the Navy Aerodynamical Laboratory in Washington in 1924. The measured and derived results are given without correction for vl/v for wall effect and for standard air density, p=0.00237 slug per cubic foot."
Air force and three moments for F-5-L Seaplane
From Introduction: "A model of the F-5-L seaplane was made, verified, and tested at 40 miles an hour in the 8' x 8' tunnel for lift and drag, also for pitching, yawing and rolling moments. Subsequently, the yawing moment test was repeated with a modified fin. The results are reported without VL scale correction."
Air Force Tests of Sperry Messenger Model With Six Sets of Wings
From Summary: "The purpose of this test was to compare six well-known airfoils, the R.A.F 15, U.S.A. 5, U.S.A. 27, U.S.A. 35-B, Clark Y, and Gottingen 387, fitted to the Sperry Messenger model, at full scale Reynolds number as obtained in the variable density wind tunnel of the National Advisory Committee for Aeronautics; and to determine the scale effect on the model equipped with all the details of the actual airplane. The results show a large decrease in minimum drag coefficient upon increasing the Reynolds number from about one-twentieth scale to full scale. A comparison is made between the results of these tests and those obtained from tests made in this tunnel on airfoils alone."
Air Forces Exerted on Streamlined Bodies with Round or Square Cross- Sections, When Placed Obliquely to the Airstream
"The question of behavior of a streamlined body with round or square cross-sections is of importance in determining the shape to give an airplane fuselage. It is our task here to show how the lift and drag are affected, with the object placed obliquely to the air stream" (p. 1).
Air forces, moments and damping on model of fleet airship Shenandoah
From Introduction: "To furnish data for the design of the fleet airship Shenandoah, a model was made and tested in the 8 by 8 foot wind tunnel for wind forces, moments, and damping, under conditions described in this report. The results are given for air of standard density. P=0.00237 slugs per cubic foot with vl/v correction, and with but a brief discussion of the aerodynamic design features of the airship."
The air forces on a model of the sperry messenger airplane without propeller
From Summary: "This is a report on a scale effect research which was made in the variable-density wind tunnel of the National Advisory Committee for Aeronautics at the request of the Army Air Service. While the present report is of a preliminary nature, the work has progressed far enough to show that the scale effect is almost entirely confined to the drag."
The air forces on a systematic series of biplane and triplane cellule models
Report discussing the air forces on a systematic series of biplane and triplane cellule models which are measured in the atmospheric density tunnel.
Air forces on airfoils moving faster than sound
We are undertaking the task of computing the air forces on a slightly cambered airfoil in the absence of friction and with an infinite aspect ratio. We also assume in advance that the leading edge is very sharp and that its tangent lies in the direction of motion.
The Air Propeller, Its Strength and Correct Shape
It is possible to give a propeller such a shape that, under given conditions, viz., a definite speed of revolution and flying speed, the bending stresses in the blades will assume quite an insignificant magnitude.
Air reactions to objects moving at rates above the velocity of sound with application to the air propeller
From Discussion: "To meet these unusual conditions three sets of ball-bearings were employed and arranged in tandem, thereby reducing their speeds by the ratio of the number of sets used, as shown in Fig.3. This proved to be a complete success. The results obtained in experiments with a two-blade, 4 foot propeller of series 2, are given in Fig. 9."
Air Resistance Measurements on Actual Airplane Parts
"For the calculation of the parasite resistance of an airplane, a knowledge of the resistance of the individual structural and accessory parts is necessary. The most reliable basis for this is given by tests with actual airplane parts at airspeeds which occur in practice. The data given here relate to the landing gear of a Siemanms-Schuckert DI airplane; the landing gear of a 'Luftfahrzeug-Gesellschaft' airplane (type Roland Dlla); landing gear of a 'Flugzeugbau Friedrichshafen' G airplane; a machine gun, and the exhaust manifold of a 269 HP engine" (p. 1).
Air traffic
This report presents a recounting of the steps taken by France to establish national and international regulation over air traffic.
Air Transport
Report presenting the development in air transport that has taken place since civil aviation between England and Europe started at the end of August 1919. The primary subjects explored include the character of loads on aircraft, routes operated, results in passengers carried and efficiency of the service, costs of the service, question of subsidies, and probable future developments.
Air Transport Economics
Report presenting an exploration of the costs of operation for commercial airlines operating in Europe at the time of the report.
Aircraft Accidents: Method of Analysis
From Introduction Purpose and Organization: "This report on a method of analysis of aircraft accidents has been prepared by a special committee on the nomenclature, subdivision, and classification of aircraft accidents organized by the National Advisory Committee for Aeronautics in response to a request dated February 18, 1928, from the Air Coordination Committee consisting of the Assistant Secretaries for Aeronautics in the Departments of War, Navy, and Commerce."
Aircraft Engine Design
From Introduction: "The subject of this paper is so broad in scope that a large volume might be devoted to it. In a short paper of this kind it is possible simply to sketch in the high lights of aircraft engine design showing the development to date, the possibilities of the future, and the underlying fundamental principles. Summarizing this development and referring to the graph (Fig.1), we that there is now a water-cooled engine in every power from 150 to 800 HP. and an air-cooled engine in the 200 to 400 HP. classes."
Airfoil lift with changing angle of attack
From Summary: "Tests have been made in the atmospheric wind tunnel of the National Advisory Committee for Aeronautics to determine the effects of pitching oscillations upon the lift of an airfoil. It has been found that the lift of an airfoil, while pitching, is usually less than that which would exist at the same angle of attack in the stationary condition, although exceptions may occur when the lift is small or if the angle of attack is being rapidly reduced. It is also shown that the behavior of a pitching airfoil may be qualitatively explained on the basis of accepted aerodynamic theory."
Airplane Balance
The authors argue that the center of gravity has a preponderating influence on the longitudinal stability of an airplane in flight, but that manufacturers, although aware of this influence, are still content to apply empirical rules to the balancing of their airplanes instead of conducting wind tunnel tests. The author examines the following points: 1) longitudinal stability, in flight, of a glider with coinciding centers; 2) the influence exercised on the stability of flight by the position of the axis of thrust with respect to the center of gravity and the whole of the glider; 3) the stability on the ground before taking off, and the influence of the position of the landing gear. 4) the influence of the elements of the glider on the balance, the possibility of sometimes correcting defective balance, and the valuable information given on this point by wind tunnel tests; 5) and a brief examination of the equilibrium of power in horizontal flight, where the conditions of stability peculiar to this kind of flight are added to previously existing conditions of the stability of the glider, and interfere in fixing the safety limits of certain evolutions.
Airplane Crashes: Engine Troubles: A Possible Explanation
The aim was to bring attention to what might be the cause of some aircraft accidents for which there was no satisfactory explanation. The author notes that in testing aircraft accidents at the Bureau of Standards, it happened frequently that the engine performance became erratic when the temperature of the air entering the carburetor was between 0 C and 20 C. Investigation revealed the trouble to have been caused by the formation and collection of snow somewhere between the entrance to the carburetor and the manifold, probably at the throttle.
Airplane Drag
It has been less well understood that the induced drag (or, better said, the undesired increase in the induced drag as compared with the theoretical minimum calculated by Prandtl) plays a decisive role in the process of taking off and therefore in the requisite engine power. This paper seeks to clarify the induced drag.
Airplane Parachutes
The "Bulletin Technique", of March, 1919, gave the results of tests and studies made up to that date in connection with airplane parachutes. This work has been continued.
Airplane Performance as Influenced by the Use of a Supercharged Engine
"The question of the influence of a supercharged engine on airplane performance is treated here in a first approximation, but one that gives an exact idea of the advantage of supercharging. Considered here is an airplane that climbs first with an ordinary engine, not supercharged, and afterwards climbs with a supercharged engine. The aim is to find the difference of the ceilings reached in the two cases" (p. 1).
Airplane performance, past and present
Report discussing the progress of airplane performance and measured by speed.
Airplane Speeds of the Future
While the reliability of predictions is poor the author still attempts to gauge the future speeds of airplanes.
Airplane Stability Calculations and Their Verification by Flight Tests
For some time, the designers of airplanes have begun to occupy themselves with the question of longitudinal stability. In their quest to simplify calculation and data collection, the designers have attached the greatest importance to the coefficient of initial longitudinal stability. In this study a diagram was constructed from the data of the tunnel tests, which depends neither on the position of the center of gravity nor of the angle of deflection of the elevators. This diagram is constructed by means of straight lines drawn through the metacenters of the complete airplane, in a direction parallel to the tangents to the polar of the airplane relative to a system of axes fixed with reference to the airplane.
Airplane Strength Calculations and Static Tests in Russia: An Attempt at Standardization
We are here giving a summary of the rules established by the Theoretical Section of the Central Aerodynamic Institute of Moscow for the different calculation cases of an airplane. It appears the engineers of the Aerodynamic Institute considered only thick or medium profiles. For these profiles they have attempted to increase the safety when the center of pressure moves appreciably toward the trailing edge.
Airplane Superchargers
Discussed here are the principles and operation of aircraft engine superchargers used to maintain and increase engine power as aircraft encounter decreases in the density of air as altitude rises. Details are given on the design and operation of the centrifugal compressors. A method is given for calculating the amount of power needed to drive a compressor. The effects of the use of a compressor on fuel system operation and design are discussed. Several specific superchargers that were in operation are described.
Airplanes in horizontal curvilinear flight
The report discussing single and two-seater airplanes as well as larger airplanes.
An airship slide rule
From Introduction: "This report prepared for the National Advisory Committee for Aeronautics, describes an airship slide rule developed by the Gas-Chemistry Section of the Bureau of Standards, at the request of the Bureau of Engineering of the Navy Department."
Albatros Commercial Airplane L 73
The Albatros was a two engine commercial biplane carrying 2 pilots, eight passengers, and 160 KG of baggage. The framework is metal, the wings having plywood and fabric over the steel tubing. The L 73 was the first 2 engine biplane to be made in Germany.
The Albatros L 72A: A German Newspaper Carrier With Slotted Wings
The Albatros 72A is a normal tractor biplane specifically designed to deliver newspapers by dropping them overboard in bundles for ground transport to pick up. It has a 42 ft. wingspan, and a 220 HP B.M.W. engine.
Albert TE-1 Training Airplane
The TE-1 is designed for the economical training of pilots and is a single seat parasol cantilever monoplane. It is nearly entirely made of wood, using a 40 HP. air-cooled Salmson A.D. 9 engine, and weighs 255 kg empty.
Back to Top of Screen