UNT Libraries Government Documents Department - Browse

ABOUT BROWSE FEED

3-D Measurement of Deformation Microstructure of Al(0.2%)Mg Using Submicron Resolution White X-Ray Microbeams

Description: We have used submicron-resolution white x-ray microbeams on the MHATT-CAT beamline 7-ID at the Advanced Photon Source to develop techniques for three-dimensional investigation of the deformation microstructure in a 20% plane strain compressed Al(0.2%)Mg tri-crystal. Kirkpatrick-Baez mirrors were used to focus white radiation from an undulator to a 0.7 x 0.7 {micro}m{sup 2} beam that was scanned over bi- and tri-crystal regions near the triple-junction of the tri-crystal. Depth resolution along the x-ray microbeam of less than 5 microns was achieved by triangulation to the diffractibn source point using images taken at a series of CCD distances from the microbeam. Computer indexing of the deformation cell structure in the bi-crystal region provided orientations of individual subgrains to {approximately}0.01 degrees, making possible detailed measurements of the rotation axes between individual cells.
Date: November 29, 1999
Creator: Larson, B. C.; tamura, N.; Chung, J.-S.; Ice, G. E.; Budai, J. D.; Tischler, J. Z. et al.
Item Type: Article

A 3-d modular gripper design tool

Description: Modular fixturing kits are precisely machined sets of components used for flexible, short-turnaround construction of fixtures for a variety of manufacturing purposes. A modular vise is a parallel-jaw vise, where each jaw is a modular fixture plate with a regular grid of precisely positioned holes. A modular vise can be used to locate and hold parts for machining, assembly, and inspection tasks. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid plate to each jaw of a parallel-jaw gripper, the authors gain the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed a previous algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses added to the planar algorithm to improve its utility, including a three-dimensional grasp quality metric based on geometric and force information, three-dimensional geometric loading analysis, and inter-gripper interference analysis to determine the compatibility of multiple grasps for handing the part from one gripper to another. Finally, the authors describe two applications which combine the utility of modular vise-style grasping with inter-gripper interference: The first is the design of a flexible part-handling subsystem for a part cleaning workcell under development at Sandia National Laboratories; the second is the automatic design of grippers that support the assembly of multiple products on a single assembly line.
Date: January 1, 1997
Creator: Brown, R.G. & Brost, R.C.
Item Type: Report

A 3-d modular gripper design tool

Description: Modular fixturing kits are sets of components used for flexible, rapid construction of fixtures. A modular vise is a parallel-jaw vise, each jaw of which is a modular fixture plate with a regular grid of precisely positioned holes. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid-plate to each jaw of a parallel-jaw gripper, one gains the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed an algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses they have added to the planar algorithm, including a 3-d grasp quality metric based on force information, 3-d geometric loading analysis, and inter-gripper interference analysis. Finally, the authors describe two applications of their code. One of these is an internal application at Sandia, while the other shows a potential use of the code for designing part of an agile assembly line.
Date: February 1, 1997
Creator: Brown, R.G. & Brost, R.C.
Item Type: Article

A 3-D numerical study of pinhole diffraction to predict the accuracy of EUV point diffraction interferometry

Description: A 3-D electromagnetic field simulation is used to model the propagation of extreme ultraviolet (EUV), 13-nm, light through sub-1500 {Angstrom} dia pinholes in a highly absorptive medium. Deviations of the diffracted wavefront phase from an ideal sphere are studied within 0.1 numerical aperture, to predict the accuracy of EUV point diffraction interferometersused in at-wavelength testing of nearly diffraction-limited EUV optical systems. Aberration magnitudes are studied for various 3-D pinhole models, including cylindrical and conical pinhole bores.
Date: December 1, 1995
Creator: Goldberg, K.A.; Tejnil, E. & Bokor, J.
Item Type: Article

3-D Ray-tracing and 2-D Fokker-Planck Simulations of Radiofrequency Application to Tokamak Plasmas

Description: A state of the art numerical tool has been developed to simulate the propagation and the absorption of coexisting different types of waves in a tokamak geometry. The code includes a numerical solution of the three-dimensional (R, Z, {Phi}) toroidal wave equation for the electric field of the different waves in the WKBJ approximation. At each step of integration, the two-dimensional (v{sub {parallel}}, v{sub {perpendicular}}) Fokker-Planck equation is solved in the presence of quasilinear diffusion coefficients. The electron Landau damping of the waves is modeled taking into account the interaction of the wave electric fields with the quasilinearly modified distribution function. Consistently, the code calculates the radial profiles of non-inductively generated current densities, the transmitted power traces and the total power damping curves. Synergistic effects among the different type of waves (e.g., lower hybrid and ion Bernstein waves) are studied through the separation of the contributions of the single wave from the effects due to their coexistence.
Date: May 1, 1999
Creator: Cardinali, A.; Paoletti, F. & Bernabei, S.
Item Type: Report

3-D Silicon Photonic Lattices- Cornerstone of an Emerging Photonics Revolution

Description: Three-dimensional photonic lattices are engineered materials which are the photonic analogues of semiconductors. These structures were first proposed and demonstrated in the mid-to-late 1980's. However, due to fabrication difficulties, lattices active in the infrared are only just emerging. Wide ranges of structures and fabrication approaches have been investigated. The most promising approach for many potential applications is a diamond-like structure fabricated using silicon microprocessing techniques. This approach has enabled the fabrication of 3-D silicon photonic lattices active in the infrared. The structures display band gaps centered from 12{micro} down to 1.55{micro}.
Date: July 8, 1999
Creator: Fleming, J.G. & Lin, Shawn-Yu
Item Type: Article

3-D Spectral Induced Polarization (IP) Imaging: Non-Invasive Characterization Of Contaminant Plumes

Description: The overall objective of this project is to develop the scientific basis for characterizing contaminant plumes in the earth's subsurface using field measurements of induced polarization (IP) effects. Three specific objectives towards this end are 1. 2. 3. Understanding IP at the laboratory level through measurements of complex resistivity as a function of frequency in rock and soil samples with varying pore geometries, pore fluid conductivities and saturations, and contaminant chemistries and concentrations. Developing effective data acquisition techniques for measuring the critical IP responses (time domain or frequency domain) in the field. Developing modeling and inversion algorithms that permit the interpretation of field IP data in terms of subsurface geology and contaminant plume properties.
Date: June 1, 1997
Creator: Morgan, Dale F.; Lesmes, David P.; Rodi, William; Shi, Weiqun; Frye, Kevin, M. & Sturrock, John
Item Type: Report

3-D Spectral IP Imaging: Non-Invasive Characterization of Contaminant Plumes

Description: The overall objective of this project is to develop the scientific basis for characterizing contaminant plumes in the earth's subsurface using field measurements of induced polarization (IP) effects. Three specific objectives towards this end are: (1) Understanding IP at the laboratory level through measurements of complex resistivity as a function of frequency in rock and soil samples with varying pore geometries, pore fluid conductivities and saturations, and contaminant chemistries and concentrations. (2) Developing effective data acquisition techniques for measuring the critical IP responses (time domain or frequency domain) in the field. (3) Developing modeling and inversion algorithms that permit the interpretation of field IP data in terms of subsurface geology and contaminant plume properties.
Date: June 1, 1998
Creator: Morgan, F. Dale; Rodi, William & Lesmes, David
Item Type: Report

3-D spectral IP imaging: Non-invasive characterization of contaminant plumes. 1998 annual progress report

Description: 'The overall objective of this project is to develop the scientific basis for characterizing contaminant plumes in the earth''s subsurface using field measurements of induced polarization (IP) effects. Three specific objectives towards this end are: (1) understanding IP at the laboratory level through measurements of complex resistivity as a function of frequency in rock and soil samples with varying pore geometries, pore fluid conductivities and saturations, and contaminant chemistries and concentrations; (2) developing effective data acquisition techniques for measuring the critical IP responses (time domain or frequency domain) in the field; (3) developing modeling and inversion algorithms that permit the interpretation of field IP data in terms of subsurface geology and contaminant plume properties. The authors laboratory experiments to date are described in Appendices A and B, which consist of two papers submitted to the annual SAGEEP conference (Frye et al., 1998; Sturrock et al., 1998). The experiments involved measurements of complex resistivity vs. frequency on a suite of brine saturated sandstone samples. In one set of experiments, the fluid chemistry (pH, ionic strength, and cation type) was varied. In a second set of experiments, the microgeometry of the rock matrix was varied. The experiments showed that spectral IP responses are sensitive to subtle variations in both the solution chemistry and rock microgeometry. The results demonstrate that spectral IP responses have the potential of being sensitive indicators of in-situ chemistry and microgeometry, the latter of which may be related to the hydraulic properties. Data Acquisition The authors have been looking in some detail at the effects of electromagnetic coupling and how to practically deal with it. In this area, the results to date are summarized in Vandiver (1998). The progress in the development of modeling and inversion algorithms for IP is described in Appendix C, a paper submitted to the ...
Date: June 1, 1998
Creator: Morgan, F. D.; Rodi, W. & Lesmes, D.
Item Type: Report

3-D spectral IP imaging: Non-invasive characterization of contaminant plumes. Annual progress report, September 15, 1996--September 14, 1997

Description: 'The objective of this project is to develop the scientific basis for characterizing contaminant plumes in the earth''s subsurface using field measurements of induced polarization (IP) effects. The first-year accomplishments are (1) laboratory experiments on fluid-saturated sandstones quantifying the dependence of spectral IP responses on solution chemistry and rock micro-geometry; (2) library research on the current understanding of electromagnetic coupling effects on IP data acquired in the field: and (3) development of prototype forward modeling and inversion algorithms for interpreting IP data in terms of 3-D models of complex resistivity.'
Date: December 1, 1997
Creator: Frye, K.M.; Lesmes, D.P.; Morgan, F.D.; Rodi, W.; Shi, W. & Sturrock, J.
Item Type: Report

3-D Target Location from Stereoscopic SAR Images

Description: SAR range-Doppler images are inherently 2-dimensional. Targets with a height offset lay over onto offset range and azimuth locations. Just which image locations are laid upon depends on the imaging geometry, including depression angle, squint angle, and target bearing. This is the well known layover phenomenon. Images formed with different aperture geometries will exhibit different layover characteristics. These differences can be exploited to ascertain target height information, in a stereoscopic manner. Depending on the imaging geometries, height accuracy can be on the order of horizontal position accuracies, thereby rivaling the best IFSAR capabilities in fine resolution SAR images. All that is required for this to work are two distinct passes with suitably different geometries from any plain old SAR.
Date: October 1, 1999
Creator: Doerry, Armin W.
Item Type: Report

3-D vertical seismic profiling at LLNL Site 300

Description: The initial goal of the 3-D Vertical Seismic Profiling (VSP) work at LLNL was to characterize seismic wave velocities and frequencies below the vadose zone to design the acquisition geometry for a 3-D shallow surface seismic reflection survey. VSPs are also used routinely to provide a link between surface seismic data and well logs. However, a test 2-D seismic line recorded at LLNL in the Spring of 1994 indicated that obtaining high quality reflection images below the vadose zone, yet shallower that 50 m, would require an expensive, very finely sampled survey ({lt} 1 m receiver spacing). Extensive image processing of the LLNL 2-D test line indicated that the only reliable reflection was from the top of the water table. Surprisingly, these results were very different than recent 3-D seismic work recorded at other sites, where high quality, high frequency surface (up to 300 Hz) reflection images were obtained as shallow as 20m. We believe that the differences are primarily due to the comparatively deep vadose zone at LLNL (15 to 30m) as compared to 0-5m at other sites. The thick vadose zone attenuates the reflection signals, particularly at the high frequencies (above 100 @). In addition, the vadose zone at LLNL creates a seismogram in which surface-propagating noise overlaps with the reflection signals for reflections above 50 m. By contrast, when the vadose zone is not thick, high frequencies can propagate and noise will not overlap with reflections as severely. Based on the results from the 2-D seismic line and the encouraging results from a VSP run concurrent with the 2-D seismic experiment, we modified the objectives of the research and expanded the scope of the VSP imaging at LLNL. We conducted two 3-D multi-offset VSP experiments at LLNL in the Summer and Fall of 1994. These VSP experiments ...
Date: January 29, 1997
Creator: Bainer, R.; Rector, J. & Milligan, P.
Item Type: Report

3-D woven, mullite matrix, composite filter

Description: Westinghouse, with Techniweave as a major subcontractor, is conducting a three-phase program aimed at providing advanced candle filters for a 1996 pilot scale demonstration in one of the two hot gas filter systems at Southern Company Service`s Wilsonville PSD Facility. The Base Program (Phases I and II) objective is to develop and demonstrate the suitability of the Westinghouse/Techniweave next generation composite candle filter for use in Pressurized Fluidized Bed Combustion (PFBC) and/or Integrated Gasification Combined Cycle (IGCC) power generation systems. The Optional Task (Phase M, Task 5) objective is to fabricate, inspect and ship to Wilsonville Hot gas particulate filters are key components for the successful commercializaion of advanced coal-based power-generation systems such as Pressurized Fluidized-bed Combustion (PFBC), including second-generation PFBC, and Integrated Gasification Combined Cycles (IGCC). Current generation monolithic ceramic filters are subject to catastrophic failure because they have very low resistance to crack propagation. To overcome this problem, a damage-tolerant ceramic filter element is needed.
Date: December 1, 1995
Creator: Lane, J.E.; Painter, C.J. & Radford, K.C. LeCostaouec, J.F.
Item Type: Report

A 3-dimensional ray-trace model for predicting the performance of flashlamp-pumped laser amplifiers

Description: We have developed a fully three-dimensional model for the performance of flashlamp pumped laser amplifiers. The model uses a reverse ray-trace technique to calculate the pumping of the laser glass by the flashlamp radiation. We have discovered several different methods by which we can speed up the calculation of the gain profile in a amplifier. The model predicts the energy-storage performance of the Beamlet amplifiers to better than 5%. This model will be used in the optimization of the National Ignition Facility (NIF) amplifier design.
Date: February 13, 1997
Creator: Jancaitis, K.S.; Haney, S.W.; Munro, D.H.; Le Touze, G. & Cabourdin, O.
Item Type: Article

3-dimensional wells and tunnels for finite element grids

Description: Modeling fluid, vapor, and air injection and extraction from wells poses a number of problems. The length scale of well bores is centimeters, the region of high pressure gradient may be tens of meters and the reservoir may be tens of kilometers. Furthermore, accurate representation of the path of a deviated well can be difficult. Incorporating the physics of injection and extraction can be made easier and more accurate with automated grid generation tools that incorporate wells as part of a background mesh that represents the reservoir. GEOMESH is a modeling tool developed for automating finite element grid generation. This tool maintains the geometric integrity of the geologic framework and produces optimal (Delaunay) tetrahedral grids. GEOMESH creates a 3D well as hexagonal segments formed along the path of the well. This well structure is tetrahedralized into a Delaunay mesh and then embedded into a background mesh. The well structure can be radially or vertically refined and each well layer is assigned a material property or can take on the material properties of the surrounding stratigraphy. The resulting embedded well can then be used by unstructured finite element models for gas and fluid flow in the vicinity of wells or tunnels. This 3D well representation allows the study of the free- surface of the well and surrounding stratigraphy. It reduces possible grid orientation effects, and allows better correlation between well sample data and the geologic model. The well grids also allow improved visualization for well and tunnel model analysis. 3D observation of the grids helps qualitative interpretation and can reveal features not apparent in fewer dimensions.
Date: April 1, 1996
Creator: Cherry, T.A.; Gable, C.W. & Trease, H.
Item Type: Report

3 MW, 110 GHz ECH system for the DIII-D tokamak

Description: To support the Advanced Tokamak (AT) operating regimes in the DIII-D tokamak, methods need to be developed to control the current and pressure profiles across the plasma discharge. In particular, AT plasmas require substantial off-axis current in contrast to normal tokamak discharges where the current peaks on-axis. An effort is under way to use Electron Cyclotron Current Drive (ECCD) as a method of sustaining the off-axis current in AT plasmas. The first step in this campaign is the installation of three megawatts of electron cyclotron heating power. This involves the installation of three rf systems operating at 110 GHz, the second harmonic resonance frequency on DIII-D, with each system generating nominally 1 MW. The three systems will use one GYCOM (Russian) gyrotron and two CPI (formerly Varian) gyrotrons, all with windowless evacuated corrugated low loss transmission lines. The first two of three 1 MW ECH systems is operating routinely at DIII-D with injected power at 110 GHz of approximately 1.5 MW with good power accountability. Transport experiments using modulated ECH have been performed confirming the power deposition location. On-axis and off-axis current drive experiments have been successfully performed with on-axis ECCD currents of 170 kA being observed.
Date: July 1998
Creator: Callis, R. W.; Lohr, J.; Ponce, D.; Harris, T. E.; O`Neill, R. C.; Remsen, D.B. et al.
Item Type: Article

3(omega) damage threshold evaluation of final optics components using Beamlet mule and off-line testing

Description: A statistics-based model is being developed to predict the laser-damage-limited lifetime of UV optical components on the NIF laser. In order to provide data for the model, laser damage experiments were performed on the Beamlet laser system at LLNL. An early prototype NIF focus lens was exposed to twenty 35 1 nm pulses at an average fluence of 5 J/cm{sup 2}, 3ns. Using a high resolution optic inspection system a total of 353 damage sites was detected within the 1160 cm{sup 2} beam aperture. Through inspections of the lens before, after and, in some cases, during the campaign, pulse to pulse damage growth rates were measured for damage initiating both on the surface and at bulk inclusions. Growth rates as high as 79 {micro}m/pulse (surface diameter) were observed for damage initiating at pre-existing scratches in the surface. For most damage sites on the optic, both surface and bulk, the damage growth rate was approximately l0{micro}m/pulse. The lens was also used in Beamlet for a subsequent 1053 {micro}m/526 {micro}m campaign. The 352 {micro}m-initiated damage continued to grow during that campaign although at generally lower growth rate.
Date: July 27, 1998
Creator: Kozlowski, M. F.; Maricle, S.; Mouser, R.; Schwartz, S.; Wegner, P. & Weiland, T.
Item Type: Article

4.5 Meter high level waste canister study

Description: The Tank Waste Remediation System (TWRS) Storage and Disposal Project has established the Immobilized High-Level Waste (IBLW) Storage Sub-Project to provide the capability to store Phase I and II BLW products generated by private vendors. A design/construction project, Project W-464, was established under the Sub-Project to provide the Phase I capability. Project W-464 will retrofit the Hanford Site Canister Storage Building (CSB) to accommodate the Phase I I-ILW products. Project W-464 conceptual design is currently being performed to interim store 3.0 m-long BLW stainless steel canisters with a 0.61 in diameter, DOE is considering using a 4.5 in canister of the same diameter to reduce permanent disposal costs. This study was performed to assess the impact of replacing the 3.0 in canister with the 4.5 in canister. The summary cost and schedule impacts are described.
Date: October 1, 1997
Creator: Calmus, R.B., Westinghouse Hanford, Richland, WA
Item Type: Report

4. International reservoir characterization technical conference

Description: This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.
Date: April 1997
Item Type: Article

4 MW upgrade to DIII-D FWCD system: System commissioning and initial operation

Description: The initial installation of the 4 MW fast wave current drive (FWCD) upgrade started in 1992 with the purchase of two ABB/Thomcast AG rf power amplifiers. These amplifiers cover the frequency range 30 MHz to 120 MHz. A maximum output power of over 2 MW between 30 MHz and 80 MHz and 1 MW at 120 MHz were the specification requirements. The system as installed is comprised of the two mentioned rf amplifiers, coaxial transmission and matching components, rf phase and amplitude monitoring, and a SUN SparcStation 10 control system. Due to various reasons almost every major component in the system required redesign and engineering in order to meet the system requirements. The failures, probable cause and the final redesigns will be discussed as well as some thoughts on how better to specify system requirements for future systems.
Date: October 1995
Creator: Cary, W. P.; Callis, R. W.; de Grassie, J. S.; Harris, T. E.; O`Neill, R. C.; Pinsker, R. I. et al.
Item Type: Article

5. annual clean coal technology conference: powering the next millennium. Volume 2

Description: The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.
Date: June 1, 1997
Item Type: Article

5. international workshop on the identification of transcribed sequences

Description: This workshop was held November 5--8, 1995 in Les Embiez, France. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on mapping the human genome. Attention is focused on the following topics: transcriptional maps; functional analysis; techniques; model organisms; and tissue specific libraries and genes. Abstracts are included of the papers that were presented.
Date: December 31, 1995
Item Type: Article